Skip to main content

Advertisement

Log in

Longitudinal score prediction for Alzheimer’s disease based on ensemble correntropy and spatial–temporal constraint

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Neuroimaging data has been widely used to predict clinical scores for automatic diagnosis of Alzheimer’s disease (AD). For accurate clinical score prediction, one of the major challenges is high feature dimension of the imaging data. To address this issue, this paper presents an effective framework using a novel feature selection model via sparse learning. In contrast to previous approaches focusing on a single time point, this framework uses information at multiple time points. Specifically, a regularized correntropy with the spatial–temporal constraint is used to reduce the adverse effect of noise and outliers, and promote consistent and robust selection of features by exploring data characteristics. Furthermore, ensemble learning of support vector regression (SVR) is exploited to accurately predict AD scores based on the selected features. The proposed approach is extensively evaluated on the Alzheimer’s disease neuroimaging initiative (ADNI) dataset. Our experiments demonstrate that the proposed approach not only achieves promising regression accuracy, but also successfully recognizes disease-related biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar, C., Westman, E., Muehlboeck, J. S., et al. (2013). Different multivariate techniques for automated classification of MRI data in Alzheimer’s disease and mild cognitive impairment. Psychiatry Research, 212(2), 89–98.

    Article  Google Scholar 

  • Alzheimer’s Association. (2015). 2015 Alzheimer’s disease facts and figures. Alzheimers Dement, 11(3), 332–384.

    Article  Google Scholar 

  • Boyd, S., Xiao, L., & Mutapcic, A. (2003). Subgradient Methods.

  • Che, D., Liu, Q., Rasheed, K., & Tao, X. (2011). Decision tree and ensemble learning algorithms with their applications in bioinformatics. Advances in Experimental Medicine and Biology, 696, 191–199.

    Article  CAS  Google Scholar 

  • Chen, X., Pan, W., Kwok, J. T., & Carbonell, J. G. (2009). Accelerated gradient method for multi-task sparse learning problem. In 9th IEEE International Conference on Data Mining (pp. 746–751).

  • Convit, A., De Asis, J., De Leon, M. J., Tarshish, C. Y., De Santi, S., & Rusinek, H. (2000). Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiology of Aging, 21(1), 19–26.

    Article  CAS  Google Scholar 

  • Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage, 47(4), 1363–1370.

    Article  Google Scholar 

  • Eskildsen, S. F., Coupé, P., Fonov, V. S., Pruessner, J. C., & Collins, D. L. (2015). Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiology of Aging, 36, S23–S31.

    Article  CAS  Google Scholar 

  • Fan, Y., Kaufer, D., & Shen, D. (2010). Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. ISBI (pp. 852–855).

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  Google Scholar 

  • Gallego-Jutglà, E., Solé-Casals, J., Vialatte, F.-B., Elgendi, M., Cichocki, A., & Dauwels, J. (2015). A hybrid feature selection approach for the early diagnosis of Alzheimer’s disease. Journal of Neural Engineering, 12(1), 16018.

    Article  Google Scholar 

  • Hao, X., Yao, X., Yan, J., et al. (2016). Identifying Multimodal intermediate phenotypes between genetic risk factors and disease status in Alzheimer’s disease. Neuroinformatics, 14(4), 1–14.

    Article  Google Scholar 

  • Hao, X., Li, C., Yan, J., et al. (2017). Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis. In Bioinformatics, 33(14), i341-i349.

    Article  Google Scholar 

  • He, X., Cai, D., & Niyogi, P. (2005). Laplacian score for feature selection. Advances in Neural Information Processing Systems, 18, 507–514.

    Google Scholar 

  • He, R., Tan, T., Wang, L., & Zheng, W. (2012). L2,1 regularized correntropy for robust feature selection. CVPR (pp. 2504–2511).

  • Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., Johnson, S. C. & Alzheimer’s Disease Neuroimaging Initiative. (2009). Spatially augmented LP boosting for AD classification with evaluations on the ADNI dataset. Neuroimage, 48(1), 138–149.

    Article  Google Scholar 

  • Jie, B., Liu, M., Liu, J., Zhang, D., & Shen, D. (2017). Temporally-constrained group sparse learning for longitudinal data analysis in Alzheimer’s disease. IEEE Transactions on Biomedical Engineering, 64(1), 238–249.

    Article  Google Scholar 

  • Kochanek, K. D., Xu, J., Murphy, S. L., Minino, A. M., & Kung, H. C. (2012). National vital statistics reports deaths: final data for 2009. National Center for Health Statistics, 60(3), 1–117.

    Google Scholar 

  • Kuncheva, L. I., Rodriguez, J. J., Plumpton, C. O., Linden, D. E. J., & Johnston, S. J. (2010). Random subspace ensembles for FMRI classification. IEEE Transactions on Medical Imaging, 29(2), 531–542.

    Article  Google Scholar 

  • Lei, B., Chen, S., Ni, D., Wang, T. & Alzheimer’s Disease Neuroimaging Initiative. (2016). Discriminative learning for Alzheimer’s disease diagnosis via canonical correlation analysis and multimodal fusion. Frontiers in Aging Neuroscience, 8, 77.

    Article  Google Scholar 

  • Lei, B., Chen, S., Ni, D., & Wang, T. (2017). Relational-regularized discriminative sparse learning for Alzheimer’s disease diagnosis. IEEE Transactions on Cybernetics, 47(4), 1102–1113.

    Article  Google Scholar 

  • Liu, J., & Ye, J. (2010). Efficient l1/lq norm regularization. arXiv Prepr. arXiv, 1009.4766, 1–19.

    Google Scholar 

  • Liu, W., Pokharel, P. P., & Principe, J. C. (2007). Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing, 55(11), 5286–5298.

    Article  Google Scholar 

  • Liu, M., Zhang, D., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2012). Ensemble sparse classification of Alzheimer’s disease. Neuroimage, 60(2), 1106–1116.

    Article  Google Scholar 

  • Liu, X., Tosun, D., Weiner, M. W., Schuff, N. & Alzheimer’s Disease Neuroimaging Initiative.(2013). Locally linear embedding (LLE) for MRI based Alzheimer’s disease classification. Neuroimage, 83, 148–157.

    Article  Google Scholar 

  • Liu, F., Wee, C. Y., Chen, H., & Shen, D. (2014). Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification. Neuroimage, 84, 466–475.

    Article  Google Scholar 

  • Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage, 44(4), 1415–1422.

    Article  Google Scholar 

  • Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43(11), 2412–2414.

    Article  CAS  Google Scholar 

  • Nesterov, Y. (2013). Gradient methods for minimizing composite function. Mathematical Programming, 140(1), 125–161.

    Article  Google Scholar 

  • Ng, B., & Abugharbieh, R. (2011). Generalized sparse regularization with application to fMRI brain decoding. Information Processing in Medical Imaging, 22, 612–623.

    Article  Google Scholar 

  • Ota, K., Oishi, N., Ito, K., & Fukuyama, H. (2015). Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer’s disease. Journal of Neuroscience Methods, 256, 168–183.

    Article  Google Scholar 

  • Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. American Journal of Psychiatry, 141(11), 1356–1364.

    Article  CAS  Google Scholar 

  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.

    Article  CAS  Google Scholar 

  • Shen, D., Resnick, S. M., & Davatzikos, C. (2003). 4D HAMMER image registration method for longitudinal study of brain changes. Human Brain Mapping, 1–8.

  • Shen, L., Kim, S., Qi, Y., et al. (2011). Identifying neuroimaging and proteomic biomarkers for MCI and AD via the elastic net. Multimodal Brain Image Analysis, 7012, 27–34.

    Article  Google Scholar 

  • Shi, F., Wang, L., Dai, Y., Gilmore, J. H., Lin, W., & Shen, D. (2012). LABEL: pediatric brain extraction using learning-based meta-algorithm. Neuroimage, 62(3), 1975–1986.

    Article  Google Scholar 

  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.

    Article  CAS  Google Scholar 

  • Suk, H. I., Lee, S.-W., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2016). Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Structure & Function, 221(5), 2569–2587.

    Article  CAS  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO: a retrospective. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 58(1), 267–288.

    Google Scholar 

  • Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused LASSO. Journal of the Royal Statistical Society. Series B, Methodological, 67(1), 91–108.

    Article  Google Scholar 

  • Vapnik, V., & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774–780.

    Google Scholar 

  • Wang, Z., Zhu, X., Adeli, E., et al. (2017). Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning. Medical Image Analysis, 39, 218–230.

    Article  Google Scholar 

  • Yan, J., Li, T., Wang, H., et al. (2015). Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm. Neurobiology of Aging, 36(1), S185–S193.

    Article  Google Scholar 

  • Yau, W. Y. W., Tudorascu, D. L., McDade, E. M., Ikonomovic, S., James, J. A., Minhas, D., et al. (2015). Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurology, 14(8), 804–813.

    Article  Google Scholar 

  • Yin, S., Wen, Z., Shi, J., Peng, Y., Peng, J., et al. (2017). Manifold preserving: an intrinsic approach for semisupervised distance metric learning. IEEE Transactions on Neural Networks and Learning Systems, (99), 1–12.

  • Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.

    Article  CAS  Google Scholar 

  • Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage, 55(3), 856–867.

    Article  Google Scholar 

  • Zhang, D., Shen, D. & Alzheimer’s Disease Neuroimaging Initiative. (2012a). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage, 59(2), 895–907.

    Article  Google Scholar 

  • Zhang, D., Liu, J., & Shen, D.(2012b). Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis. MICCAI (pp. 264–271).

  • Zhang, L., Wang, L., & Lin, W. (2012c). Conjunctive patches subspace learning with side information for collaborative image retrieval. IEEE Transactions on Image Processing, 21(8), 3707–3720.

    Article  Google Scholar 

  • Zhu, X., Huang, Z., Shen, H. T., Cheng, J., & Xu, C. (2012). Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognition, 45(8), 3003–3016.

    Article  Google Scholar 

  • Zhu, X., Suk, H. I., Wang, L., Lee, S. W., & Shen, D. (2015). A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Medical Image Analysis, 75(6), 570–577.

    Google Scholar 

  • Zhu, X., Suk, H. I., Lee, S. W., & Shen, D. (2016a). Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Transactions on Biomedical Engineering, 63(3), 607–618.

    Article  Google Scholar 

  • Zhu, X., Suk, H. I., Lee, S. W., & Shen, D. (2016b). Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis. Brain Imaging and Behavior, 10(3), 818–828.

    Article  Google Scholar 

  • Zhu, X., Suk, H. I., Lee, S. W., & Shen, D. (2017). Discriminative self-representation sparse regression for neuroimaging-based Alzheimer’s disease diagnosis. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-017-9731-x.

Download references

Acknowledgements

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Funding

This study was funded partly by National Natural Science Foundation of China (Nos. 61771321, 61501305 and 81771922), National Natural Science Foundation of Guangdong Province (Nos.2017A030313377 and 2016A030313047), Shenzhen Key Basic Research Project (Nos. KQJSCX20170327151357330, JCYJ20170302153337765, JCYJ20160307154003475 JCYJ20150525092940982 and 201502007), Shenzhen Peacock Plan (NO. KQTD2016053112051497), the Interdisciplinary Innovation Team of Shenzhen University, and the National Natural Science Foundation of Shenzhen University (Nos. 827 − 000152, 2016077 and 201565 and 2016089). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. HoffmannLa Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; MesoScale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Zou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, B., Hou, W., Zou, W. et al. Longitudinal score prediction for Alzheimer’s disease based on ensemble correntropy and spatial–temporal constraint. Brain Imaging and Behavior 13, 126–137 (2019). https://doi.org/10.1007/s11682-018-9834-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9834-z

Keywords

Navigation