Skip to main content
Log in

Reconfigured functional network dynamics in adult moyamoya disease: a resting-state fMRI study

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Treatment of vascular cognitive impairment (VCI) in adult moyamoya disease (MMD) is still unclear because of its unveiled neural synchronization. This study introduced a dynamic measurement of connectivity number entropy (CNE) to characterize both spatial and temporal dimensions of network interactions. Fifty-one patients with MMD were recruited (27 with VCI and 24 with intact cognition), as well as 26 normal controls (NCs). Static network properties were first examined to confirm its aberrance in MMD with VCI. Then, the dynamic measurement of CNE was used to detect the deteriorated flexibility of MMD with VCI at global, regional, and network levels. Finally, dynamic reconfiguration of flexible and specialized regions was traced across the three groups. Graph theory analysis indicated that MMD exhibited “small-world” network topology but presented with a deviating pattern from NC as the disease progressed in all topologic metrics of integration, segregation, and small-worldness. Subsequent dynamic analysis showed significant CNE differences among the three groups at both global (p < 0.001) and network levels (default mode network, p = 0.004; executive control network, p = 0.001). Specifically, brain regions related to key aspects of information processing exhibited significant CNE changes across the three groups. Furthermore, CNE values of both flexible and specialized regions changed with impaired cognition. This study not only sheds light on both the static and dynamic organizational principles behind network changes in adult MMD for the first time, but also provides a new methodologic viewpoint to acquire more knowledge of its pathophysiology and treatment direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.

    PubMed  PubMed Central  Google Scholar 

  • Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calviere, L., Ssi Yan Kai, G., Catalaa, I., Marlats, F., Bonneville, F., & Larrue, V. (2012). Executive dysfunction in adults with moyamoya disease is associated with increased diffusion in frontal white matter. Journal of Neurology, Neurosurgery, and Psychiatry, 83(6), 591–593.

    PubMed  Google Scholar 

  • Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 81–98.

    PubMed  Google Scholar 

  • Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.

    PubMed  PubMed Central  Google Scholar 

  • Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 70(6 Pt2), 066111.

    PubMed  Google Scholar 

  • Cocchi, L., Gollo, L. L., Zalesky, A., & Breakspear, M. (2017). Criticality in the brain: A synthesis of neurobiology, models and cognition. Progress in Neurobiology, 158, 132–152.

    PubMed  Google Scholar 

  • Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 1348–1355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews. Neuroscience, 12(1), 43–56.

    CAS  PubMed  Google Scholar 

  • Deco, G., Mclntosh, A. R., Shen, K., Hutchison, R. M., Menon, R. S., Everling, S., et al. (2014). Identification of optimal structural connectivity using functional connectivity and neural modeling. The Journal of Neuroscience, 34(23), 7910–7916.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, L., Huang, J., Zhang, Q., Chan, R. C., Wang, R., & Wan, W. (2016). Different aspects of dysexecutive syndrome in patients with moyamoya disease and its clinical subtypes. Journal of Neurosurgery, 125(2), 299–307.

    PubMed  Google Scholar 

  • Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16616–16621.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Festa, J. R., Schwarz, L. R., Pliskin, N., Cullum, C. M., Lacritz, L., Charbel, F. T., Mathews, D., Starke, R. M., Connolly, E. S., Marshall, R. S., & Lazar, R. M. (2010). Neurocognitive dysfunction in adult moyamoya disease. Journal of Neurology, 257(5), 806–815.

    PubMed  Google Scholar 

  • Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., Launer, L. J., Laurent, S., Lopez, O. L., Nyenhuis, D., Petersen, R. C., Schneider, J. A., Tzourio, C., Arnett, D. K., Bennett, D. A., Chui, H. C., Higashida, R. T., Lindquist, R., Nilsson, P. M., Roman, G. C., Sellke, F. W., Seshadri, S., & American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. (2011). Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association. Stroke, 42(9), 2672–2713.

    PubMed  PubMed Central  Google Scholar 

  • Haglund, M. M., Ojemann, G. A., Schwartz, T. W., & Lettich, E. (1994). Neuronal activity in human lateral temporal cortex during serial retrieval from short-term memory. The Journal of Neuroscience, 14(3), 1507–1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S., Kiviniemi, V., Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M., & Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360–378.

    PubMed  Google Scholar 

  • Karzmark, P., Zeifert, P. D., Bell-Stephens, T. E., Steinberg, G. K., & Dorfman, L. J. (2012). Neurocognitive impairment in adults with moyamoya disease without stroke. Neurosurgery, 70(3), 634–638.

    PubMed  Google Scholar 

  • Kazumata, K., Tha, K. K., Narita, H., Kusumi, I., Shichinohe, H., Ito, M., Nakayama, N., & Houkin, K. (2015). Chronic ischemia alters brain microstructural integrity and cognitive performance in adult moyamoya disease. Stroke, 46(2), 354–360.

    CAS  PubMed  Google Scholar 

  • Kazumata, K., Tha, K. K., Narita, H., Shichinohe, H., Ito, M., Uchino, H., & Abumiya, T. (2016). Investigating brain network characteristics interrupted by covert white matter injury in patients with moyamoya disease: Insights from graph theoretical analysis. World Neurosurgery, 89, 654–665.

    PubMed  Google Scholar 

  • Kazumata, K., Tha, K. K., Uchino, H., Ito, M., Nakayama, N., & Abumiya, T. (2017). Mapping altered brain connectivity and its clinical associations in adult moyamoya disease: A resting-state functional MRI study. PLoS One, 12(8), e0182759.

    PubMed  PubMed Central  Google Scholar 

  • Kiviniemi, V., Vire, T., Remes, J., Elseoud, A. A., Starck, T., Tervonen, O., & Nikkinen, J. (2011). A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connectivity, 1(4), 339–347.

    PubMed  Google Scholar 

  • Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews. Neuroscience, 6(9), 691–702.

    CAS  PubMed  Google Scholar 

  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.

    CAS  PubMed  Google Scholar 

  • Lei, Y., Li, Y., Ni, W., Jiang, H., Yang, Z., Guo, Q., Gu, Y., & Mao, Y. (2014). Spontaneous brain activity in adult patients with moyamoya disease: A resting-state fMRI study. Brain Research, 1546, 27–33.

    CAS  PubMed  Google Scholar 

  • Lei, Y., Su, J., Jiang, H., Guo, Q., Ni, W., Yang, H., Gu, Y., & Mao, Y. (2017). Aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease. Brain Imaging and Behavior, 11(1), 176–184.

    PubMed  Google Scholar 

  • Liang, X., Zou, Q., He, Y., & Yang, Y. (2016). Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads. Cerebral Cortex, 26(4), 1501–1511.

    PubMed  Google Scholar 

  • Liu, X., & Duyn, J. H. (2013). Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4392–4397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., & Jiang, T. (2008). Disrupted small-world networks in schizophrenia. Brain, 131(Pt 4), 945–961.

    PubMed  Google Scholar 

  • Massobrio, P., de Arcangelis, L., Pasquale, V., Jensen, H. J., & Plenz, D. (2015). Criticality as a signature of healthy neural systems. Frontiers in Systems Neuroscience, 9, 22.

    PubMed  PubMed Central  Google Scholar 

  • Mohr, H., Wolfensteller, U., Betzel, R. F., Mišić, B., Sporns, O., Richiardi, J., & Ruge, H. (2016). Integration and segregation of large-scale brain networks during short-term task automatization. Nature Communications, 7, 13217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulus, M. P., Hozack, N. E., Zauscher, B. E., Frank, L., Brown, G. G., Braff, D. L., & Schuckit, M. A. (2002). Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology, 26(1), 53–63.

    CAS  PubMed  Google Scholar 

  • Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 42(6), 817–826.

    CAS  PubMed  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069.

    PubMed  Google Scholar 

  • Rudie, J. D., Brown, J. A., Beck-Pancer, D., Hernandez, L. M., Dennis, E. L., Thompson, P. M., Bookheimer, S. Y., & Dapretto, M. (2012). Altered functional and structural brain network organization in autism. Neuroimage Clin, 2, 79–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakoğlu, U., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. MAGMA, 23(5–6), 351–366.

    PubMed  PubMed Central  Google Scholar 

  • Salvador, R., Suckling, J., Schwarzbauer, C., & Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 937–946.

    PubMed  PubMed Central  Google Scholar 

  • Shew, W. L., Yang, H., Petermann, T., Roy, R., & Plenz, D. (2009). Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. The Journal of Neuroscience, 29(49), 15595–15600.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shew, W. L., Yang, H., Yu, S., Roy, R., & Plenz, D. (2011). Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. The Journal of Neuroscience, 31(1), 55–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158–165.

    CAS  PubMed  Google Scholar 

  • Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276.

    CAS  PubMed  Google Scholar 

  • Suzuki, J., & Kodama, N. (1983). Moyamoya disease--a review. Stroke, 14(1), 104–109.

    CAS  PubMed  Google Scholar 

  • Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Frontiers in Physiology, 3, 15.

    PubMed  PubMed Central  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.

    CAS  PubMed  Google Scholar 

  • van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29(23), 7619–7624.

    PubMed  PubMed Central  Google Scholar 

  • van Wijk, B. C., Stam, C. J., & Daffertshofer, A. (2010). Comparing brain networks of different size and connectivity density using graph theory. PLoS One, 5(10), e13701.

    PubMed  PubMed Central  Google Scholar 

  • Vecchio, F., Miraglia, F., Piludu, F., Granata, G., Romanello, R., Caulo, M., Onofrj, V., Bramanti, P., Colosimo, C., & Rossini, P. M. (2017). “Small world” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: A study via graph theory from EEG data. Brain Imaging and Behavior, 11(2), 473–485.

    PubMed  Google Scholar 

  • Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342.

    PubMed  PubMed Central  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393(6684), 440–442.

    CAS  PubMed  Google Scholar 

  • Xin, F., & Lei, X. (2015). Competition between frontoparietal control and default networks supports social working memory and empathy. Social Cognitive and Affective Neuroscience, 10(8), 1144–1152.

    PubMed  PubMed Central  Google Scholar 

  • Yin, D., Liu, W., Zeljic, K., Wang, Z., Lv, Q., Fan, M., Cheng, W., & Wang, Z. (2016). Dissociable changes of frontal and parietal cortices in inherent functional flexibility across the human life span. The Journal of Neuroscience, 36(39), 10060–10074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., & Gong, Q. (2011). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological Psychiatry, 70(4), 334–342.

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81771237, 81801155 & 11105062); the National Key Research and Development Program (No. SQ2016YFSF110141); the Fundamental Research Funds for the Central Universities (No. lzujbky-2015-119); the Natural Science Foundation and Major Basic Research Program of Shanghai (No. 16JC1420100); the “Dawn” Program of Shanghai Education Commission (No. 16SG02); and the Scientific Research Project of Huashan Hospital, Fudan University (No. 2016QD082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianchun Yu or Yuxiang Gu.

Ethics declarations

This manuscript has been read and approved by all authors, who acknowledge due care in ensuring the integrity of the work. All authors have made substantial contributions to the design, collection, analysis and/or interpretation of data, and many have contributed to the writing and intellectual content of the article.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were approved by the Institutional Ethics Committee of Huashan Hospital of Fudan University, and were conducted in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

All participants gave written informed consent after totally understanding the purposes of our study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Song, B., Chen, L. et al. Reconfigured functional network dynamics in adult moyamoya disease: a resting-state fMRI study. Brain Imaging and Behavior 14, 715–727 (2020). https://doi.org/10.1007/s11682-018-0009-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-0009-8

Keywords

Navigation