Skip to main content
Log in

Functional dedifferentiation and reduced task-related deactivations underlie the age-related decline of prospective memory

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Prospective memory (PM) refers to the ability to remember to execute an intention at the appropriate moment in the future, which can be performed either at the appearance of an event (event-based, EBPM) or after a certain amount of time (time-based, TBPM). PM is generally impaired during aging but the cerebral substrates of this decline have been little investigated. Using functional Magnetic Resonance Imaging (fMRI), we investigated the neural bases of PM in 20 young and 20 healthy older adults. They were proposed a task of semantic categorisation of pictures (ongoing task). For some blocks, participants only had to perform this ongoing task while, for others, a PM instruction was added. In this case, a supplementary answer in response to a specific colour of border for EBPM or at specific time intervals for TBPM was expected. PM, and more particularly TBPM, declined in older adults. For both PM conditions, older adults recruited additional brain areas, but also showed reduced deactivations of other regions. These results are discussed in light of models of the aging brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychology and Aging, 12(1), 12–21.

    Article  CAS  PubMed  Google Scholar 

  • Barban, F., Carlesimo, G. A., Macaluso, E., Caltagirone, C., & Costa, A. (2013). Functional brain activity within the medial and lateral portion of BA10 during a prospective memory task. Behavioural Neurology, 26(3), 207–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck, S. M., Ruge, H., Walser, M., & Goschke, T. (2014). The functional neuroanatomy of spontaneous retrieval and strategic monitoring of delayed intentions. Neuropsychologia, 52, 37–50.

    Article  PubMed  Google Scholar 

  • Benoit, R. G., Gilbert, S. J., Frith, C. D., & Burgess, P. W. (2012). Rostral prefrontal cortex and the focus of attention in prospective memory. Cerebral cortex (New York, N.Y.: 1991), 22(8), 1876–1886.

    Article  Google Scholar 

  • Burgess, P. W., Quayle, A., & Frith, C. D. (2001). Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia, 39(6), 545–555.

    Article  CAS  PubMed  Google Scholar 

  • Burgess, P. W., Scott, S. K., & Frith, C. D. (2003). The role of the rostral frontal cortex (area 10) in prospective memory: a lateral versus medial dissociation. Neuropsychologia, 41(8), 906–918.

    Article  PubMed  Google Scholar 

  • Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11(7), 290–298.

    Article  PubMed  Google Scholar 

  • Burgess, P. W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: what have we learnt so far? Neuropsychologia, 49(8), 2246–2257.

    Article  PubMed  Google Scholar 

  • Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging Gracefully: Compensatory Brain Activity in High-Performing Older Adults. NeuroImage, 17(3), 1394–1402.

  • Cona, G., Arcara, G., Tarantino, V., & Silvia Bisiacchi, P. (2012). Age-related differences in the neural correlates of remembering time-based intentions. Neuropsychologia, 50(11), 2962–2704.

    Article  Google Scholar 

  • Cona, G., Scarpazza, C., Sartori, G., Moscovitch, M., & Bisiacchi, P. S. (2015). Neural bases of prospective memory: a meta-analysis and the “attention to delayed intention” (AtoDI) model. Neuroscience and Biobehavioral Reviews, 52, 21–37.

    Article  PubMed  Google Scholar 

  • Craik, F. I. M. (1986). A functional account of age differences in memory. In F. Lix & H. Hagendorf (Eds.), Human memory and cognitive capabilities: Mechanisms and performances (pp. 409–422). Amsterdam: Elsevier Science.

    Google Scholar 

  • Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The Posterior-Anterior Shift in Aging. Cerebral Cortex, 18(5), 1201–1209.

  • Den Ouden, H. E. M., Frith, U., Frith, C., & Blakemore, S.-J. (2005). Thinking about intentions. NeuroImage, 28(4), 787–796.

    Article  CAS  PubMed  Google Scholar 

  • Einstein, G. O., & McDaniel, M. A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 16(4), 717–726.

    Article  CAS  PubMed  Google Scholar 

  • Einstein, G. O., McDaniel, M. A., Richardson, S. L., Guynn, M. J., & Cunfer, A. R. (1995). Aging and prospective memory: examining the influences of self-initiated retrieval processes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(4), 996–1007.

    Article  CAS  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Cheung, R. T. F., Chan, Y.-S., Chu, L.-W., Mak, H. K. F., & Lee, T. M. C. (2014). The relevance of short-range fibers to cognitive efficiency and brain activation in aging and dementia. PloS One, 9(4), e90307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonneaud, J., Kalpouzos, G., Bon, L., Viader, F., Eustache, F., & Desgranges, B. (2011). Distinct and shared cognitive functions mediate event- and time-based prospective memory impairment in normal ageing. Memory (Hove, England), 19(4), 360–377.

    Article  Google Scholar 

  • Gonneaud, J., Rauchs, G., Groussard, M., Landeau, B., Mézenge, F., de La Sayette, V., et al. (2014). How do we process event-based and time-based intentions in the brain? An fMRI study of prospective memory in healthy individuals. Human Brain Mapping, 35(7), 3066–3082.

    Article  PubMed  Google Scholar 

  • Guynn, M. J., McDaniel, M. A., & Einstein, G. O. (1998). Prospective memory: when reminders fail. Memory & Cognition, 26(2), 287–298.

    Article  CAS  Google Scholar 

  • Hafkemeijer, A., van der Grond, J., & Rombouts, S. A. R. B. (2012). Imaging the default mode network in aging and dementia. Biochimica et Biophysica Acta, 1822(3), 431–441.

    Article  CAS  PubMed  Google Scholar 

  • Henry, J. D., MacLeod, M. S., Phillips, L. H., & Crawford, J. R. (2004). A meta-analytic review of prospective memory and aging. Psychology and Aging, 19(1), 27–39.

    Article  PubMed  Google Scholar 

  • Ihle, A., Hering, A., Mahy, C. E. V., Bisiacchi, P. S., & Kliegel, M. (2013). Adult age differences, response management, and cue focality in event-based prospective memory: a meta-analysis on the role of task order specificity. Psychology and Aging, 28(3), 714–720.

    Article  PubMed  Google Scholar 

  • Kalpouzos, G., Chételat, G., Baron, J.-C., Landeau, B., Mevel, K., Godeau, C., et al. (2009). Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging, 30(1), 112–124.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A., Sharma, N. K., & Dixit, S. (2008). Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation. The Journal of Psychology, 142(5), 517–531.

    Article  PubMed  Google Scholar 

  • Kliegel, M., Ramuschkat, G., & Martin, M. (2003). [Executive functions and prospective memory performance in old age: an analysis of event-based and time-based prospective memory]. Zeitschrift Für Gerontologie Und Geriatrie: Organ Der Deutschen Gesellschaft Für Gerontologie Und Geriatrie, 36(1), 35–41.

  • Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14504–14509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäntylä, T., Missier, F. D., & Nilsson, L.-G. (2009). Age differences in multiple outcome measures of time-based prospective memory. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 16(6), 708–720.

    Article  PubMed  Google Scholar 

  • Martin, M., Kliegel, M., & McDaniel, M. A. (2003). The involvement of executive functions in prospective memory performance of adults. International Journal of Psychology, 38(4), 195–206.

    Article  CAS  Google Scholar 

  • Mattis, S. (1976). Mental status examination for organic mental syndrome in the elderly patient. In L. Bellack & T. E. Karasu (Eds.), Geriatric psychiatry (pp. 77–121). New York: Grune & Stratton.

    Google Scholar 

  • Mattli, F., Zöllig, J., & West, R. (2011). Age-related differences in the temporal dynamics of prospective memory retrieval: a lifespan approach. Neuropsychologia, 49(12), 3494–3504.

    Article  PubMed  Google Scholar 

  • McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective memory retrieval: a multiprocess framework. Applied Cognitive Psychology, 14(7), S127–S144.

    Article  Google Scholar 

  • McDaniel, M. A., & Einstein, G. O. (2007). Prospective memory: An overview and synthesis of an emerging field. Thousand Oaks: Sage Publications.

    Google Scholar 

  • McDaniel, M. A., & Einstein, G. O. (2011). The neuropsychology of prospective memory in normal aging: a componential approach. Neuropsychologia, 49(8), 2147–2155.

    Article  PubMed  Google Scholar 

  • Mevel, K., Chételat, G., Eustache, F., & Desgranges, B. (2011). The default mode network in healthy aging and Alzheimer’s disease. International Journal of Alzheimer's Disease, 2011, 535816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Momennejad, I., & Haynes, J.-D. (2012). Human anterior prefrontal cortex encodes the “what” and “when” of future intentions. NeuroImage, 61(1), 139–148.

    Article  PubMed  Google Scholar 

  • Occhionero, M., Esposito, M. J., Cicogna, P. C., & Nigro, G. (2010). The effects of ongoing activity on time estimation in prospective remembering. Applied Cognitive Psychology, 24(6), 774–791.

    Article  Google Scholar 

  • Oksanen, K. M., Waldum, E. R., McDaniel, M. A., & Braver, T. S. (2014). Neural mechanisms of time-based prospective memory: evidence for transient monitoring. PloS One, 9(3), e92123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Yamadori, A., Frith, C. D., & Burgess, P. W. (2007). Differential involvement of regions of rostral prefrontal cortex (Brodmann area 10) in time- and event-based prospective memory. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 64(3), 233–246.

    Article  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Park, D. C., Hertzog, C., Kidder, D. P., Morrell, R. W., & Mayhorn, C. B. (1997). Effect of age on event-based and time-based prospective memory. Psychology and Aging, 12(2), 314–327.

    Article  CAS  PubMed  Google Scholar 

  • Peira, N., Ziaei, M., & Persson, J. (2016). Age differences in brain systems supporting transient and sustained processes involved in prospective memory and working memory. NeuroImage, 125, 745–755.

    Article  PubMed  Google Scholar 

  • Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: a link to cognitive control? Journal of Cognitive Neuroscience, 19(6), 1021–1032.

    Article  PubMed  Google Scholar 

  • Prakash, R. S., Heo, S., Voss, M. W., Patterson, B., & Kramer, A. F. (2012). Age-related differences in cortical recruitment and suppression: implications for cognitive performance. Behavioural Brain Research, 230(1), 192–200.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6(9), 394–400.

  • Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.

    Article  Google Scholar 

  • Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245–251.

    Article  CAS  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., & Park, D. C. (2010). Human neuroscience and the aging mind: a new look at old problems. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 65(4), 405–415.

    Article  PubMed  Google Scholar 

  • Reynolds, J. R., West, R., & Braver, T. (2009). Distinct neural circuits support transient and sustained processes in prospective memory and working memory. Cerebral Cortex (New York, N.Y.: 1991), 19(5), 1208–1221.

    Article  Google Scholar 

  • Rusted, J., Ruest, T., & Gray, M. A. (2011). Acute effects of nicotine administration during prospective memory, an event related fMRI study. Neuropsychologia, 49(9), 2362–2368.

    Article  PubMed  Google Scholar 

  • Simons, J. S., Schölvinck, M. L., Gilbert, S. J., Frith, C. D., & Burgess, P. W. (2006). Differential components of prospective memory? Evidence from fMRI. Neuropsychologia, 44(8), 1388–1397.

    Article  PubMed  Google Scholar 

  • Villain, N., Landeau, B., Groussard, M., Mevel, K., Fouquet, M., Dayan, J., et al. (2010). A simple way to improve anatomical mapping of functional brain imaging. Journal of neuroimaging: official journal of the American Society of Neuroimaging, 20(4), 324–333.

    Article  Google Scholar 

  • West, R. (2011). The temporal dynamics of prospective memory: a review of the ERP and prospective memory literature. Neuropsychologia, 49(14), 3795–3800.

    Article  Google Scholar 

  • West, R., & Bowry, R. (2005). Effects of aging and working memory demands on prospective memory. Psychophysiology, 42(6), 698–712.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. Lamberton for his help in the fMRI sequences, J. Chavant, J. Dayan, C. Lebouleux, M.H. Noel, M.C. Onfroy, A. Quillard and C. Schupp for data acquisition and recruitment of participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géraldine Rauchs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Fundings

This work was supported by the Association France-Alzheimer and the French Ministère de l’Enseignement Supérieur et de la Recherche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonneaud, J., Lecouvey, G., Groussard, M. et al. Functional dedifferentiation and reduced task-related deactivations underlie the age-related decline of prospective memory. Brain Imaging and Behavior 11, 1873–1884 (2017). https://doi.org/10.1007/s11682-016-9661-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9661-z

Keywords

Navigation