Skip to main content

Advertisement

Log in

Insulin-like growth factor binding protein-2 interactions with Alzheimer’s disease biomarkers

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Plasma levels of insulin-like growth factor binding protein-2 (IGFBP-2) have been associated with Alzheimer’s disease (AD) and brain atrophy. Some evidence suggests a potential synergistic effect of IGFBP-2 and AD neuropathology on neurodegeneration, while other evidence suggests the effect of IGFBP-2 on neurodegeneration is independent of AD neuropathology. Therefore, the current study investigated the interaction between plasma IGFBP-2 and cerebrospinal fluid (CSF) biomarkers of AD neuropathology on hippocampal volume and cognitive function. AD Neuroimaging Initiative data were accessed (n = 354, 75 ± 7 years, 38 % female), including plasma IGFBP-2, CSF total tau, CSF Aβ-42, MRI-quantified hippocampal volume, and neuropsychological performances. Mixed effects regression models evaluated the interaction between IGFBP-2 and AD biomarkers on hippocampal volume and neuropsychological performance, adjusting for age, sex, education, APOE ε4 status, and cognitive diagnosis. A baseline interaction between IGFBP-2 and CSF Aβ-42 was observed in relation to left (t(305) = −6.37, p = 0.002) and right hippocampal volume (t(305) = −7.74, p = 0.001). In both cases, higher IGFBP-2 levels were associated with smaller hippocampal volumes but only among amyloid negative individuals. The observed interaction suggests IGFBP-2 drives neurodegeneration through a separate pathway independent of AD neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abner, E. L., Nelson, P. T., Kryscio, R. J., Schmitt, F. A., Fardo, D. W., Woltjer, R. L., et al. (2016). Diabetes is associated with cerebrovascular but not Alzheimer’s disease neuropathology. Alzheimer's & Dementia, 12(8), 882–889. doi:10.1016/j.jalz.2015.12.006.

    Article  Google Scholar 

  • Ahtiluoto, S., Polvikoski, T., Peltonen, M., Solomon, A., Tuomilehto, J., Winblad, B., et al. (2010). Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology, 75(13), 1195–1202. doi:10.1212/WNL.0b013e3181f4d7f8.

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis, Z., Schneider, J. A., Wilson, R. S., Li, Y., Arnold, S. E., Wang, Z., & Bennett, D. A. (2006). Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology, 67(11), 1960–1965.

    Article  CAS  PubMed  Google Scholar 

  • Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., Jones, R. N., Mukherjee, S., Curtis, S. M., Harvey, D., Weiner, M., & Mungas, D. (2012). Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging and Behavior, 6, 502–516. doi:10.1007/s11682-012-9186-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194. doi:10.1006/nimg.1998.0395.

    Article  CAS  PubMed  Google Scholar 

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980. doi:10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  • Doecke, J. D., Laws, S. M., Faux, N. G., Wilson, W., Burnham, S. C., Lam, C.-P., Mondal, A., Bedo, J., Bush, A. I., Brown, B., De Ruyck, K., Ellis, K. A., Fowler, C., Gupta, V. B., Head, R., Macaulay, S. L., Pertile, K., Rowe, C. C., Rembach, A., Rodrigues, M., Rumble, R., Szoeke, C., Taddei, K., Taddei, T., Trounson, B., Ames, D., Masters, C. L., & Martins, R. N. (2012). Blood-based protein biomarkers for diagnosis of Alzheimer disease. Archives of Neurology, 69, 1318–1325. doi:10.1001/archneurol.2012.1282.

    Article  PubMed  Google Scholar 

  • Dore, S., Kar, S., & Quirion, R. (1997). Insulin-like growth factor I protects and rescues hippocampal neurons against -amyloid- and human amylin-induced toxicity. Proceedings of the National Academy of Sciences, 94, 4772–4777. doi:10.1073/pnas.94.9.4772.

    Article  CAS  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207. doi:10.1006/nimg.1998.0396.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.

    Article  CAS  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., Curtis, S. M., Mungas, D., & Crane, P. K. (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior, 6, 517–527. doi:10.1007/s11682-012-9176-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertze, J., Nägga, K., Minthon, L., & Hansson, O. (2014). Changes in cerebrospinal fluid and blood plasma levels of IGF-II and its binding proteins in Alzheimer’s disease: an observational study. BMC Neurology, 14, 64. doi:10.1186/1471-2377-14-64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohman, T. J., Samuels, L. R., Liu, D., Gifford, K. A., Mukherjee, S., Benson, E. M., et al. (2015). Stroke risk interacts with Alzheimer’s disease biomarkers on brain aging outcomes. Neurobiology of Aging, 36(9), 2501–2508. doi:10.1016/j.neurobiolaging.2015.05.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, W. T., Holtzman, D. M., Fagan, A. M., Shaw, L. M., Perrin, R., Arnold, S. E., Grossman, M., Xiong, C., Craig-Schapiro, R., Clark, C. M., Pickering, E., Kuhn, M., Chen, Y., Van Deerlin, V. M., McCluskey, L., Elman, L., Karlawish, J., Chen-Plotkin, A., Hurtig, H. I., Siderowf, A., Swenson, F., Lee, V. M.-Y., Morris, J. C., Trojanowski, J. Q., & Soares, H. (2012). Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology, 79, 897–905. doi:10.1212/WNL.0b013e318266fa70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., Whitwell, L. J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D. L. G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C. S., Krueger, G., Ward, H. A., Metzger, G. J., Scott, K. T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J. P., Fleisher, A. S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., & Weiner, M. W. (2008). The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691. doi:10.1002/jmri.21049.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagust, W. J., Landau, S. M., Shaw, L. M., Trojanowski, J. Q., Koeppe, R. A., Reiman, E. M., et al. (2009). Relationships between biomarkers in aging and dementia. Neurology, 73(15), 1193–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, J.-H., Vanderstichele, H., Trojanowski, J. Q., & Shaw, L. M. (2012). Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer’s disease. Methods, 56, 484–493. doi:10.1016/j.ymeth.2012.03.023.

    Article  CAS  PubMed  Google Scholar 

  • Kivipelto, M., Laakso, M. P., Tuomilehto, J., Nissinen, A., & Soininen, H. (2002). Hypertension and hypercholesterolaemia as risk factors for Alzheimer's disease: potential for pharmacological intervention. CNS Drugs, 16(7), 435–444. doi:10.2165/00023210-200216070-00001.

  • Laviola, L., Natalicchio, A., & Giorgino, F. (2007). The IGF-I signaling pathway. Current Pharmaceutical Design, 13(7), 663–669.

    Article  CAS  PubMed  Google Scholar 

  • Mackay, K. B., Loddick, S. A., Naeve, G. S., Vana, A. M., Verge, G. M., & Foster, A. C. (2003). Neuroprotective effects of insulin-like growth factor-binding protein ligand inhibitors in vitro and in vivo. Journal of Cerebral Blood Flow & Metabolism, 23(10), 1160–1167. doi:10.1097/01.WCB.0000087091.01171.AE.

    Article  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34, 939–944.

    Article  CAS  PubMed  Google Scholar 

  • McNay, E. C., & Recknagel, A. K. (2011). Reprint of: “Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes.”. Neurobiology of Learning and Memory, 96(4), 517–528. doi:10.1016/j.nlm.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Morris, J. C. (1993). The clinical dementia rating (CDR): current version and scoring rules. Neurology, 43, 2412–2414.

    Article  CAS  PubMed  Google Scholar 

  • O’Bryant, S. E., Xiao, G., Barber, R., Reisch, J., Doody, R., Fairchild, T., Adams, P., Waring, S., & Diaz-Arrastia, R. (2010). A serum protein-based algorithm for the detection of Alzheimer disease. Archives of Neurology, 67, 1077–1081. doi:10.1001/archneurol.2010.215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsson, A., Vanderstichele, H., Andreasen, N., De Meyer, G., Wallin, A., Holmberg, B., Rosengren, L., Vanmechelen, E., & Blennow, K. (2005). Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clinical Chemistry, 51, 336–345. doi:10.1373/clinchem.2004.039347.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183–194. doi:10.1111/j.1365-2796.2004.01388.x.

    Article  CAS  PubMed  Google Scholar 

  • Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61, 1402–1418. doi:10.1016/j.neuroimage.2012.02.084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Royall, D. R., Bishnoi, R. J., & Palmer, R. F. (2015). Serum IGF-BP2 strongly moderates Age’s effect on cognition: a MIMIC analysis. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2015.04.003.

    PubMed  Google Scholar 

  • Schneider, J. A., & Bennett, D. (2010). Where vascular meets neurodegenerative disease. Stroke, 41, S144–S146.

  • Schneider, J. A., Arvanitakis, Z., Bang, W., & Bennett, D. A. (2007). Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology, 69(24), 2197–2204. doi:10.1212/01.wnl.0000271090.28148.24.

  • Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., Blennow, K., Soares, H., Simon, A., Lewczuk, P., Dean, R., Siemers, E., Potter, W., Lee, V. M.-Y., & Trojanowski, J. Q. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65, 403–413. doi:10.1002/ana.21610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Figurski, M., Coart, E., Blennow, K., Soares, H., Simon, A. J., Lewczuk, P., Dean, R. A., Siemers, E., Potter, W., Lee, V. M.-Y., & Trojanowski, J. Q. (2011). Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathologica, 121, 597–609. doi:10.1007/s00401-011-0808-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, F., Liu, B., Zhou, Y., Yu, C., & Jiang, T. (2009). Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus, 19(11), 1055–1064. doi:10.1002/hipo.20573.

    Article  PubMed  Google Scholar 

  • Sims-Robinson, C., Kim, B., Rosko, A., & Feldman, E. L. (2010). How does diabetes accelerate Alzheimer disease pathology? Nature Reviews Neurology, 6(10), 551–559. doi:10.1038/nrneurol.2010.130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley, M., Macauley, S. L., & Holtzman, D. M. (2016). Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? The Journal of Experimental Medicine, 213(8), 1375–1385. doi:10.1084/jem.20160493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tham, A., Nordberg, A., Grissom, F. E., Carlsson-Skwirut, C., Viitanen, M., & Sara, V. R. (1993). Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. Journal of Neural Transmission. Parkinson's Disease and Dementia Section, 5, 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Toledo, J. B., Da, X., Bhatt, P., Wolk, D. A., Arnold, S. E., Shaw, L. M., Trojanowski, J. Q., & Davatzikos, C. (2013). Relationship between plasma analytes and SPARE-AD defined brain atrophy patterns in ADNI. PloS One, 8, e55531. doi:10.1371/journal.pone.0055531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troncoso, J. C., Zonderman, A. B., Resnick, S. M., Crain, B., Pletnikova, O., & O'Brien, R. J. (2008). Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Annals of Neurology, 64(2), 168–176. doi:10.1002/ana.21413.

  • Wang, J., Tang, Y., Zhang, W., Zhao, H., Wang, R., Yan, Y., Xu, L., & Li, P. (2013). Insulin-like growth factor-1 secreted by brain microvascular endothelial cells attenuates neuron injury upon ischemia. The FEBS Journal, 280, 3658–3668. doi:10.1111/febs.12359.

    Article  CAS  PubMed  Google Scholar 

  • Westwood, A. J., Beiser, A., Decarli, C., Harris, T. B., Chen, T. C., He, X.-M., et al. (2014). Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology, 82(18), 1613–1619. doi:10.1212/WNL.0000000000000382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.-O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., de Leon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P., & Petersen, R. C. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. Journal of Internal Medicine, 256, 240–246. doi:10.1111/j.1365-2796.2004.01380.x.

    Article  CAS  PubMed  Google Scholar 

  • Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein, M. A., Carmichael, O., Cole, P. E., Crane, P. K., DeCarli, C., Fox, N. C., Gunter, J. L., Hill, D., Killiany, R. J., Pachai, C., Schwarz, A. J., Schuff, N., Senjem, M. L., Suhy, J., Thompson, P. M., Weiner, M., & Jack, C. R. (2013). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer's & Dementia, 9, 332–337. doi:10.1016/j.jalz.2012.06.004.

    Article  Google Scholar 

Download references

Acknowledgments

F32-AG046093 (EML), R01-AG034962 (ALJ), R01-HL111516 (ALJ), K24-AG046373 (ALJ), K12-HG043483 (TJH), Vanderbilt Memory & Alzheimer’s Center; Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by National Institute on Aging, National Institute of Biomedical Imaging and Bioengineering, and generous contributions from: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is Northern California Institute for Research and Education, and study is coordinated by Alzheimer’s Disease Cooperative Study at University of California, San Diego. ADNI data are disseminated by Laboratory for Neuro Imaging at University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Angela L. Jefferson.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Disclosure statement

The authors declare no competing financial interests.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Highlights

• IGFBP-2 and AD biomarkers interact on hippocampal volume

• Higher IGFBP-2 relate to smaller hippocampi among amyloid negative individuals

• The effects of IGFBP-2 may drive neurodegeneration through independent, non-AD pathways

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, E.M., Hohman, T.J., Jefferson, A.L. et al. Insulin-like growth factor binding protein-2 interactions with Alzheimer’s disease biomarkers. Brain Imaging and Behavior 11, 1779–1786 (2017). https://doi.org/10.1007/s11682-016-9636-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9636-0

Keywords

Navigation