Skip to main content
Log in

Distinct effects of late adulthood cognitive and physical activities on gray matter volume

  • SI: Resilience/Reserve in AD
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Engagement in cognitive activity (CA) and physical activity (PA) during the lifespan may counteract brain atrophy later in life. Here, we investigated engagement in CA and PA during late adulthood in association with gray matter volume (GM) in normal older adults, with special focus on the hippocampus. Forty-five cognitively normal older individuals (mean age: 72) underwent T1-weighted MRI and self-reported CA and PA assessment. Whole brain voxel-wise multiple regression models were carried out to assess the relationships between CA, PA and GM volume adjusted by age and sex. Further adjustment for years of education and risk factors were performed. Voxel-wise analyses were projected on 3D hippocampal surface views. Cognitive activity and PA demonstrated independent regional associations with GM after adjustment for confounders. Cognitive activity was related to greater GM in extended brain areas including frontal, temporal and parietal cortices, while PA was associated with increased GM in the prefrontal, insular and motor cortices. Regression maps projected on the hippocampal surface showed a common association of PA and CA within the anterior part of the hippocampus, although the effect of CA was more subtle and also extended to the posterior part. Engagement in PA and CA in late adulthood were independently related to regional GM volume, notably in aging and AD vulnerable areas. These results support the idea that both PA and CA- based interventions may be suitable to promote brain health in late adulthood. The potential synergistic effects of PA and CA need to be addressed in future studies including larger samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arenaza-Urquijo, E. M., Landeau, B., La Joie, R., Mevel, K., Mézenge, F., Perrotin, A., Desgranges, B., Bartrés-Faz, D., Eustache, F., & Chételat, G. (2013). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage, 83, 450–457.

    Article  PubMed  Google Scholar 

  • Arenaza-Urquijo, E. M., Gonneaud, J., Fouquet, M., Perrotin, A., Mézenge, F., Landeau, B., Egret, S., De la Sayette, V., & Chételat, G. (2015a). Interaction between years of education and APOE ε4 status on frontal and temporal metabolism. Neurology, 85(16), 1392–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arenaza-Urquijo, E. M., Wirth, M., & Chételat, G. (2015b). Cognitive reserve and lifestyle: moving towards preclinical Alzheimer’s disease. Frontiers in Aging Neuroscience, 7, 134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes, D. E., & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. The Lancet. Neurology, 10(9), 819–828.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedict, C., Brooks, S. J., Kullberg, J., Nordenskjöld, R., Burgos, J., Le Grevès, M., Kilander, L., Larsson, E. M., Johansson, L., Ahlström, H., & Schiöth, H. B. (2013). Association between physical activity and brain health in older adults. Neurobiology of Aging, 34(1), 83–90.

    Article  PubMed  Google Scholar 

  • Boots, E. A., Schultz, S. A., Oh, J. M., Larson, J., Edwards, D., Cook, D., Koscik, R. L., Dowling, M. N., Gallagher, C. L., Carlsson, C. M., Rowley, H. A., Bendlin, B. B., LaRue, A., Asthana, S., Herman, B. P., Sager, M. A., Johson, S. C., & Okonkwo, O. C. (2015). Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease. Brain Imaging and Behavior, 9(3), 639–649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugg, J. M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32(3), 506–514.

    Article  PubMed  Google Scholar 

  • Chen, K. H. M., Chuah, L. Y. M., Sim, S. K. Y., & Chee, M. W. L. (2010). Hippocampal region-specific contributions to memory performance in normal elderly. Brain and Cognition, 72(3), 400–407.

    Article  PubMed  Google Scholar 

  • Chételat, G., Fouquet, M., Kalpouzos, G., Denghien, I., De la Sayette, V., Viader, F., Mézenge, F., Landeau, B., Baron, J. C., Eustache, F., & Desgranges, B. (2008). Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry. Neuropsychologia, 46(6), 1721–1731.

    Article  PubMed  Google Scholar 

  • Cirillo, J., Lavender, A. P., Ridding, M. C., & Semmler, J. G. (2009). Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. The Journal of Physiology, 587(Pt 24), 5831–5842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(2), 176–180.

    Article  Google Scholar 

  • Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Marquez, D. X., Hu, L., & Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170.

    Article  Google Scholar 

  • Cotman, C. W., Berchtold, N. C., & Christie, L.-A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Daviglus, M. L., Bell, C. C., Berrettini, W., Bowen, P. E., Connolly, E. S., Cox, N. J., Dunbar-Jacob, J. M., Granieri, E. C., Hunt, G., McGarry, K., Patel, D., Potosky, A. L., Sanders-Bush, E., Silberberg, D., & Trevisan, M. (2010). NIH state-of-the-science conference statement: preventing Alzheimer’s disease and cognitive decline. NIH Consensus and State-of-the-Science Statements, 27(4), 1–30.

    PubMed  Google Scholar 

  • de Flores, R., La Joie, R., & Chételat, G. (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience, 309, 29–50.

    Article  PubMed  Google Scholar 

  • Driscoll, I., Davatzikos, C., An, Y., Wu, X., Shen, D., Kraut, M., & Resnick, S. M. (2009). Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology, 72(22), 1906–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, Ø., Larsen, V. A., & Walhovd, K. B. (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 1667–1676.

    Article  PubMed  Google Scholar 

  • Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3017–3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35(Suppl 2), S20–S28.

    Article  PubMed  Google Scholar 

  • Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Initiative, A.’s. D. N. (2013). Brain changes in older adults at very low risk for Alzheimer’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(19), 8237–8242.

    Article  CAS  Google Scholar 

  • Flöel, A., Ruscheweyh, R., Krüger, K., Willemer, C., Winter, B., Völker, K., Lohmann, H., Zitzman, M., Mooren, F., Breitenstein, C., & Knecht, S. (2010). Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? NeuroImage, 49(3), 2756–2763.

    Article  PubMed  Google Scholar 

  • Foubert-Samier, A., Catheline, G., Amieva, H., Dilharreguy, B., Helmer, C., Allard, M., & Dartigues, J.-F. (2012). Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiology of Aging, 33(2), 423.e15–423.e25.

    Article  Google Scholar 

  • Fouquet, M., Desgranges, B., La Joie, R., Rivière, D., Mangin, J.-F., Landeau, B., Mézenge, F., Pèlerin, A., de La Sayette, V., Viader, F., Baron, J. C., Eustache, F., & Chételat, G. (2012). Role of hippocampal CA1 atrophy in memory encoding deficits in amnestic mild cognitive impairment. NeuroImage, 59(4), 3309–3315.

    Article  PubMed  Google Scholar 

  • Gidicsin, C. M., Maye, J. E., Locascio, J. J., Pepin, L. C., Philiossaint, M., Becker, J. A., Younger, A. P, Dekhtyar, M., Schultz, A.P., Amariglio, R.E., Marshall, G.A., Rentz, D.M., Hedden, T., Sperling, R.A., Johnson, K. A. (2015). Cognitive activity relates to cognitive performance but not to Alzheimer disease biomarkers. Neurology, 85(1), 48–55.

  • Gordon, B. A., Rykhlevskaia, E. I., Brumback, C. R., Lee, Y., Elavsky, S., Konopack, J. F., McAuley, E., Kramer, A. F., Colcombe, S., Gratton, G., & Fabiani, M. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology, 45(5), 825–838.

    PubMed  PubMed Central  Google Scholar 

  • Honea, R. A., Vidoni, E., Harsha, A., & Burns, J. M. (2009). Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. Journal of Alzheimer’s Disease: JAD, 18(3), 553–564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huijbers, W., Mormino, E. C., Schultz, A. P., Wigman, S., Ward, A. M., Larvie, M., Amariglio, R. E., Marshal, G. A., Rentz, D. M., & Sperling, R. A. (2015). Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain: A Journal of Neurology http://doi.org/10.1093/brain/awv007.

    Google Scholar 

  • Ikram, M. A., Vrooman, H. A., Vernooij, M. W., den Heijer, T., Hofman, A., Niessen, W. J., van der Lugt, A., Koudstaal, P. J., & Breteler, M. M. B. (2010). Brain tissue volumes in relation to cognitive function and risk of dementia. Neurobiology of Aging, 31(3), 378–386.

    Article  PubMed  Google Scholar 

  • Jack, C. R., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., Smith, G. E., Ivnik, R. J., & Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49(3), 786–794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack Jr., C. R., Dickson, D. W., Parisi, J. E., Xu, Y. C., Cha, R. H., O’Brien, P. C., Edland, S. D., Smith, G. E., Boeve, B. F., Tangalos, E. G., Kolmen, E., & Petersen, R. C. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology, 58(5), 750–757.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriska, A. M., and Caspersen, C. J. (1997). Introduction to a Collection of Physical Activity Questionnaires: Medicineandamp Science in Sports andamp Exercise, 29(Supplement), 5–9.

  • Kriska, A. M., Knowler, W. C., LaPorte, R. E., Drash, A. L., Wing, R. R., Blair, S. N., Bennet, P. H., & Kuller, L. H. (1990). Development of questionnaire to examine relationship of physical activity and diabetes in pima Indians. Diabetes Care, 13(4), 401–411.

    Article  CAS  PubMed  Google Scholar 

  • La Joie, R., Fouquet, M., Mézenge, F., Landeau, B., Villain, N., Mevel, K., Pèlerin, A., Eustache, F., Desgranges, B., & Chételat, G. (2010). Differential effect of age on hippocampal subfields assessed using a new high-resolution 3 T MR sequence. NeuroImage, 53(2), 506–514.

    Article  PubMed  Google Scholar 

  • La Joie, R., Landeau, B., Perrotin, A., Bejanin, A., Egret, S., Pélerin, A., Mézenge, F., Belliard, S., de La Sayette, V., Eustache, F., Desgranges, B., & Chételat, G. (2014). Intrinsic connectivity identifies the hippocampus as a main crossroad between Alzheimer’s and semantic dementia-targeted networks. Neuron, 81(6), 1417–1428.

    Article  CAS  PubMed  Google Scholar 

  • Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., & Kukull, W. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144(2), 73–81.

    Article  PubMed  Google Scholar 

  • Maass, A., Düzel, S., Goerke, M., Becke, A., Sobieray, U., Neumann, K., Lövden, M., Lindenberger, U., Bäckman, L., Braun-Dullaeus, R., Ahrens, D., Heinze, H. J., Müller, N. G., & Düzel, E. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Molecular Psychiatry, 20(5), 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Mangialasche, F., Kivipelto, M., Solomon, A., & Fratiglioni, L. (2012). Dementia prevention: current epidemiological evidence and future perspective. Alzheimer's Research & Therapy, 4(1), 6.

    Article  Google Scholar 

  • Middleton, L. E., & Yaffe, K. (2010). Targets for the prevention of dementia. Journal of Alzheimer’s Disease: JAD, 20(3), 915–924.

    Article  PubMed  Google Scholar 

  • Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be sensitive to change. The British Journal of Psychiatry: the Journal of Mental Science, 134, 382–389.

    Article  CAS  Google Scholar 

  • Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. The Lancet. Neurology, 13(8), 788–794.

    Article  PubMed  Google Scholar 

  • Okonkwo, O. C., Schultz, S. A., Oh, J. M., Larson, J., Edwards, D., Cook, D., Koscik, R., Gallagher, C. L., Dowling, N. M., Carlsson, C. M., Bendlin, B. B., LaRue, A., Rowley, H. A., Christian, B. T., Asthana, S., Herman, B. P., Johnson, S. C., & Sager, M. A. (2014). Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology, 83(19), 1753–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opdebeeck, C., Quinn, C., Nelis, S. M., & Clare, L. (2016). Is cognitive lifestyle associated with depressive thoughts and self-reported depressive symptoms in later life? European Journal of Ageing, 13, 63–73.

    Article  PubMed  Google Scholar 

  • Pahor, M., Guralnik, J. M., Ambrosius, W. T., Blair, S., Bonds, D. E., Church, T. S., Espeland, M. A., Fielding, R. A., Gill, T. M., Groessl, E. J., King, A. C., Kritchevsky, S. B., Manini, T. M., McDermott, M. M., Miller, M. E., Newman, A. B., Rejeski, W. J., Sink, K. M., Williamsom, J. D., & LIFE study investigators (2014). Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA, 311(23), 2387–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrotin, A., de Flores, R., Lamberton, F., Poisnel, G., La Joie, R., de la Sayette, V., Mézenge, F., Tomadesso, C., Landeau, B., Desgranges, B., & Chételat, G. (2015a). Hippocampal Subfield Volumetry and 3D Surface Mapping in Subjective Cognitive Decline. Journal of Alzheimer’s Disease: JAD, 48(Suppl 1), S141–S150.

    Article  PubMed  Google Scholar 

  • Perrotin, A., Desgranges, B., Landeau, B., Mézenge, F., La Joie, R., Egret, S., Pèlerin, A., de la Sayette, V., Eustache, F., & Chételat, G. (2015b). Anosognosia in Alzheimer disease: disconnection between memory and self-related brain networks. Annals of Neurology, 78(3), 477–486.

    Article  CAS  PubMed  Google Scholar 

  • Peters, J., Dauvermann, M., Mette, C., Platen, P., Franke, J., Hinrichs, T., & Daum, I. (2009). Voxel-based morphometry reveals an association between aerobic capacity and grey matter density in the right anterior insula. Neuroscience, 163(4), 1102–1108.

    Article  CAS  PubMed  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.

    Article  PubMed  Google Scholar 

  • Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: new insights into neuroplasticity. Neuron, 73(6), 1195–1203.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, L. O., Harper, I. T., Smith, C. J., Kriska, A. M., & Ravussin, E. (1994). Energy intake and physical activity in pima Indians: comparison with energy expenditure measured by doubly-labeled water. Obesity Research, 2(6), 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Shpanskaya, K. S., Choudhury, K. R., Hostage, C., Murphy, K. R., Petrella, J. R., Doraiswamy, P. M., & Initiative, A.’s. D. N. (2014). Educational attainment and hippocampal atrophy in the Alzheimer’s disease neuroimaging initiative cohort. Journal of Neuroradiology. Journal de Neuroradiologie, 41(5), 350–357.

    Article  PubMed  Google Scholar 

  • Smith, J. C., Nielson, K. A., Woodard, J. L., Seidenberg, M., Durgerian, S., Hazlett, K. E., Figueroa, C. M., Kandah, C. C., Kay, C. D., Matthews, M. A., & Rao, S. M. (2014). Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer’s disease. Frontiers in Aging Neuroscience, 6, 61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11(11), 1006–1012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K., Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(25), 8488–8498.

    Article  CAS  Google Scholar 

  • Suo, C., León, I., Brodaty, H., Trollor, J., Wen, W., Sachdev, P., & Valenzuela, M. J. (2012). Supervisory experience at work is linked to low rate of hippocampal atrophy in late life. NeuroImage, 63(3), 1542–1551.

    Article  PubMed  Google Scholar 

  • Ta, A. T., Huang, S. E., Chiu, M. J., Hua, M. S., Tseng, W. Y. I., Chen, S. H. A., & Qiu, A. (2012). Age-related vulnerabilities along the hippocampal longitudinal axis. Human Brain Mapping, 33(10), 2415–2427.

    Article  PubMed  Google Scholar 

  • Thomas, A. G., Dennis, A., Rawlings, N. B., Stagg, C. J., Matthews, L., Morris, M., Kolind, S. H., Foxley, S., Jenkinson, M., Nichols, T. E., Dawes, H., Bandettini, P. A., & Johansen-Berg, H. (2016). Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise. NeuroImage, 131, 162–170.

    Article  PubMed  Google Scholar 

  • Tolppanen, A.-M., Solomon, A., Kulmala, J., Kåreholt, I., Ngandu, T., Rusanen, M., Laatikainen, T., Soininen, H., Kivipelto, M. (2015). Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association, 11(4), 434–443.e6.

  • Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and cognitive decline: a non-parametric systematic review. Psychological Medicine, 36(8), 1065–1073.

    Article  PubMed  Google Scholar 

  • Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PloS One, 3(7), e2598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Roberts, R. O., Lowe, V. J., Kantarci, K., Senjem, M. L., Gunter, J. L., Boeve, B. F., Petersen, R. C., & Jack Jr., C. R. (2012). Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Annals of Neurology, 72(5), 730–738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuillemin, A., Oppert, J. M., Guillemin, F., Essermeant, L., Fontvieille, A. M., Galan, P., et al. (2000). Self-administered questionnaire compared with interview to assess past-year physical activity. Medicine and Science in Sports and Exercise, 32(6), 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., Wojcicki, T. R., Mailey, E., McAuley, E., Kramer, A. F., & Erickson, K. I. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain, Behavior, and Immunity, 26(5), 811–819.

    Article  PubMed  Google Scholar 

  • Wilson, R. S., Mendes De Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA : The Journal of the American Medical Association, 287(6), 742–748.

    Article  PubMed  Google Scholar 

  • Wilson, R. S., Barnes, L. L., Krueger, K. R., Hoganson, G., Bienias, J. L., & Bennett, D. A. (2005). Early and late life cognitive activity and cognitive systems in old age. Journal of the International Neuropsychological Society: JINS, 11(4), 400–407.

    Article  PubMed  Google Scholar 

  • Wilson, R. S., Scherr, P. A., Schneider, J. A., Tang, Y., & Bennett, D. A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69(20), 1911–1920.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, D., Fischer, F. U., de Flores, R., Chételat, G., & Fellgiebel, A. (2015). Differential associations of age with volume and microstructure of hippocampal subfields in healthy older adults. Human Brain Mapping, 36(10), 3819–3831.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank M. Leblond, C. Tomadesso, Dr. A. Perrotin, Dr. K Mevel, Dr. N. Villain, Dr. M. Fouquet, Dr. La Joie, Dr. A. Quillard, Dr. C. Schupp, Dr. J. Dayan, and the Cyceron MRI-PET staff members for their help with the patients and the imaging examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eider M. Arenaza-Urquijo.

Ethics declarations

This study was supported by Fondation Plan Alzheimer (2008–2012 Alzheimer Plan), the French Ministry of Health (PHRC-N, 2011, 06–01, PHRC-N, 2012, 12–006-0347), the 2007 LONGVIE programme of the French National Research Agency (ANR, 07LVIE 006), Conseil regional de Normandie, the French National Institute for Health and Medical Research (INSERM), and Association France Alzheimer. Authors have no conflict of interest. The local ethics committee approved the study and all participants gave written informed consent before the examinations. This study is in accordance with the ethical standards of the 1964 Helsinki declaration and its later amendments.

Additional information

Eider M. Arenaza-Urquijo and Robin de Flores equally contributed to the present work.

Electronic supplementary material

Supplementary Figure 1

Brain areas (from right to left) of the voxel-wise multiple regression model of physical activity and GM volume (a) and cognitive activity and GM volume (b) (both included in a single model) adjusted by age, sex, years of education, BMI and depression scores. (GIF 294 kb)

High resolution image (TIFF 1066 kb)

Supplementary Table 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenaza-Urquijo, E.M., de Flores, R., Gonneaud, J. et al. Distinct effects of late adulthood cognitive and physical activities on gray matter volume. Brain Imaging and Behavior 11, 346–356 (2017). https://doi.org/10.1007/s11682-016-9617-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9617-3

Keywords

Navigation