Skip to main content

Advertisement

Log in

The relationship of impulsivity and cortical thickness in depressed and non-depressed adolescents

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Major Depressive Disorder (MDD) is recognized to be heterogeneous in terms of brain structure abnormality findings across studies, which might reflect previously unstudied traits that confer variability to neuroimaging measurements. The purpose of this study was to examine the relationships between different types of trait impulsivity and MDD diagnosis on adolescent brain structure. We predicted that adolescents with depression who were high on trait impulsivity would have more abnormal cortical structure than depressed patients or non-MDD who were low on impulsivity. We recruited 58 subjects, including 29 adolescents (ages 12–19) with a primary DSM-IV diagnosis of MDD and a history of suicide attempt and 29 demographically-matched healthy control participants. Our GLM-based analyses sought to describe differences in the linear relationships between cortical thickness and impulsivity trait levels. As hypothesized, we found significant moderation effects in rostral middle frontal gyrus and right paracentral lobule cortical thickness for different subscales of the Barratt Impulsiveness Scale. However, although these brain-behavior relationships differed between diagnostic study groups, they were not simple additive effects as we had predicted. For the middle frontal gyrus, non-MDD participants showed a strong positive association between cortical thickness and BIS-11 Motor scores, while MDD-diagnosed participants showed a negative association. For Non-Planning Impulsiveness, paracentral lobule cortical thickness was observed with greater impulsivity in MDD, but no association was found for controls. In conclusion, the findings confirm that dimensions of impulsivity have discrete neural correlates, and show that relationships between impulsivity and brain structure are expressed differently in adolescents with MDD compared to non-MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe, O., Yamasue, H., Kasai, K., Yamada, H., Aoki, S., Inoue, H., et al. (2010). Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Research, 181(1), 64–70. doi:10.1016/j.pscychresns.2009.07.007.

    Article  PubMed  Google Scholar 

  • Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. Nature Reviews. Neuroscience, 14(5), 322–336. doi:10.1038/nrn3465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences, 18(4), 177–185. doi:10.1016/j.tics.2013.12.003.

    Article  PubMed  Google Scholar 

  • Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 44–79. doi:10.1016/j.pneurobio.2013.06.005.

    Article  PubMed  Google Scholar 

  • Beck, A., Schuyler, D., & Herman, J. (1974). Development of suicidal intent scales. In A. Beck, H. Resnik, & D. J. Lettieri (Eds.), The prediction of suicide (pp. 45–56). Bowie: Charles.

    Google Scholar 

  • Beck, A., Steer, R. A., & Carbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory: twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77–100. doi:10.1016/0272-7358(88)90050-5.

    Article  Google Scholar 

  • Beghi, M., Rosenbaum, J. F., Cerri, C., & Cornaggia, C. M. (2013). Risk factors for fatal and nonfatal repetition of suicide attempts: a literature review. Neuropsychiatric Disease and Treatment, 9, 1725–1736. doi:10.2147/ndt.s40213.

    PubMed  PubMed Central  Google Scholar 

  • Bernhardt, B. C., Smallwood, J., Tusche, A., Ruby, F. J., Engen, H. G., Steinbeis, N., et al. (2014). Medial prefrontal and anterior cingulate cortical thickness predicts shared individual differences in self-generated thought and temporal discounting. NeuroImage, 90, 290–297. doi:10.1016/j.neuroimage.2013.12.040.

    Article  PubMed  Google Scholar 

  • Bora, E., Harrison, B. J., Davey, C. G., Yucel, M., & Pantelis, C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42(4), 671–681. doi:10.1017/S0033291711001668.

    Article  CAS  PubMed  Google Scholar 

  • Brewin, C. R., Smith, A. J., Power, M., & Furnham, A. (1992). State and trait differences in depressive self-perceptions. Behaviour Research and Therapy, 30(5), 555–557. doi:10.1016/0005-7967(92)90042-F.

    Article  CAS  PubMed  Google Scholar 

  • Brezo, J., Paris, J., & Turecki, G. (2006). Personality traits as correlates of suicidal ideation, suicide attempts, and suicide completions: a systematic review. Acta Psychiatrica Scandinavica, 113(3), 180–206. doi:10.1111/j.1600-0447.2005.00702.x.

    Article  CAS  PubMed  Google Scholar 

  • Churchwell, J. C., & Yurgelun-Todd, D. A. (2013). Age-related changes in insula cortical thickness and impulsivity: significance for emotional development and decision-making. Developmental Cognitive Neuroscience, 6, 80–86. doi:10.1016/j.dcn.2013.07.001.

    Article  PubMed  Google Scholar 

  • Cummings, C. M., Caporino, N. E., & Kendall, P. C. (2014). Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychological Bulletin, 140(3), 816–845. doi:10.1037/a0034733.

    Article  PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.

    Article  CAS  PubMed  Google Scholar 

  • Dawe, S., & Loxton, N. J. (2004). The role of impulsivity in the development of substance use and eating disorders. Neuroscience and Biobehavioral Reviews, 28(3), 343–351. doi:10.1016/j.neubiorev.2004.03.007.

    Article  PubMed  Google Scholar 

  • Dawe, S., Gullo, M. J., & Loxton, N. J. (2004). Reward drive and rash impulsiveness as dimensions of impulsivity: implications for substance misuse. Addictive Behaviors, 29(7), 1389–1405. doi:10.1016/j.addbeh.2004.06.004.

    Article  PubMed  Google Scholar 

  • Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021.

    Article  PubMed  Google Scholar 

  • Diekhof, E. K., Keil, M., Obst, K. U., Henseler, I., Dechent, P., Falkai, P., et al. (2012). A functional neuroimaging study assessing gender differences in the neural mechanisms underlying the ability to resist impulsive desires. Brain Research, 1473, 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, D. I., Petersen, S. E., & Buckner, R. L. (2001). Dissociating memory retrieval processes using fMRI: evidence that priming does not support recognition memory. Neuron, 31(6), 1047–1059. doi:10.1016/S0896-6273(01)00429-9.

    Article  CAS  PubMed  Google Scholar 

  • Drobetz, R., Hanggi, J., Maercker, A., Kaufmann, K., Jancke, L., & Forstmeier, S. (2014). Structural brain correlates of delay of gratification in the elderly. Behavioral Neuroscience, 128(2), 134–145. doi:10.1037/a0036208.

    Article  PubMed  Google Scholar 

  • Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T. V., Truong, C., et al. (2014). Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cerebral Cortex, 24(11), 2941–2950. doi:10.1093/cercor/bht151.

    Article  PubMed  Google Scholar 

  • Evans, A. C. (2013). Networks of anatomical covariance. NeuroImage, 80, 489–504. doi:10.1016/j.neuroimage.2013.05.054.

    Article  CAS  PubMed  Google Scholar 

  • Fallucca, E., MacMaster, F. P., Haddad, J., Easter, P., Dick, R., May, G., et al. (2011). Distinguishing between major depressive disorder and obsessive-compulsive disorder in children by measuring regional cortical thickness. Archives of General Psychiatry, 68(5), 527–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207. doi:10.1006/nimg.1998.0396.

    Article  CAS  PubMed  Google Scholar 

  • Foland-Ross, L. C., Gilbert, B. L., Joormann, J., & Gotlib, I. H. (2015a). Neural markers of familial risk for depression: an investigation of cortical thickness abnormalities in healthy adolescent daughters of mothers with recurrent depression. Journal of Abnormal Psychology, 124, 476–485 US: American Psychological Association.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foland-Ross, L. C., Sacchet, M. D., Prasad, G., Gilbert, B., Thompson, P. M., & Gotlib, I. H. (2015b). Cortical thickness predicts the first onset of major depression in adolescence. International Journal of Developmental Neuroscience, 46, 125–131. doi:10.1016/j.ijdevneu.2015.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giakoumatos, C. I., Tandon, N., Shah, J., Mathew, I. T., Brady, R. O., Clementz, B. A., et al. (2013). Are structural brain abnormalities associated with suicidal behavior in patients with psychotic disorders? Journal of Psychiatric Research, 47(10), 1389–1395. doi:10.1016/j.jpsychires.2013.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giegling, I., Olgiati, P., Hartmann, A. M., Calati, R., Moller, H. J., Rujescu, D., et al. (2009). Personality and attempted suicide. Analysis of anger, aggression and impulsivity. Journal of Psychiatric Research, 43(16), 1262–1271. doi:10.1016/j.jpsychires.2009.04.013.

    Article  PubMed  Google Scholar 

  • Gruber, J., Gilbert, K. E., Youngstrom, E., Youngstrom, J. K., Feeny, N. C., & Findling, R. L. (2013). Reward dysregulation and mood symptoms in an adolescent outpatient sample. Journal of Abnormal Child Psychology, 41(7), 1053–1065. doi:10.1007/s10802-013-9746-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gvion, Y., & Apter, A. (2011). Aggression, impulsivity, and suicide behavior: a review of the literature. Archives of Suicide Research, 15(2), 93–112. doi:10.1080/13811118.2011.565265.

    Article  PubMed  Google Scholar 

  • Hamilton, J. P., Siemer, M., & Gotlib, I. H. (2008). Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Molecular Psychiatry, 13(11), 993–1000. doi:10.1038/mp.2008.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32(1), 180–194. doi:10.1016/j.neuroimage.2006.02.051.

    Article  PubMed  Google Scholar 

  • Hayes, D. J., Duncan, N. W., Xu, J., & Northoff, G. (2014). A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neuroscience & Biobehavioral Reviews, 45, 350–368. doi:10.1016/j.neubiorev.2014.06.018.

    Article  Google Scholar 

  • Hinvest, N. S., Elliott, R., McKie, S., & Anderson, I. M. (2011). Neural correlates of choice behavior related to impulsivity and venturesomeness. Neuropsychologia, 49(9), 2311–2320.

    Article  PubMed  Google Scholar 

  • Holm, S. (1979). A simple sequential rejective method procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., et al. (2012). Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. The Journal of Neuroscience, 32(50), 18087–18100. doi:10.1523/JNEUROSCI.2531-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S., Belliveau, J. W., Tengshe, C., & Ahveninen, J. (2012). Brain networks of novelty-driven involuntary and cued voluntary auditory attention shifting. PloS One, 7(8), e44062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulvershorn, L. A., Cullen, K., & Anand, A. (2011). Toward dysfunctional connectivity: a review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging and Behavior, 5(4), 307–328. doi:10.1007/s11682-011-9134-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacoboni, M., Lieberman, M. D., Knowlton, B. J., Molnar-Szakacs, I., Moritz, M., Throop, C. J., et al. (2004). Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. NeuroImage, 21(3), 1167–1173. doi:10.1016/j.neuroimage.2003.11.013.

    Article  PubMed  Google Scholar 

  • Kaag, A. M., Crunelle, C. L., van Wingen, G., Homberg, J., van den Brink, W., & Reneman, L. (2014). Relationship between trait impulsivity and cortical volume, thickness and surface area in male cocaine users and non-drug using controls. Drug and Alcohol Dependence, 144, 210–217. doi:10.1016/j.drugalcdep.2014.09.016.

    Article  PubMed  Google Scholar 

  • Kahnt, T., & Tobler, P. N. (2013). Salience signals in the right temporoparietal junction facilitate value-based decisions. The Journal of Neuroscience, 33(3), 863–869. doi:10.1523/jneurosci.3531-12.2013.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980–988. doi:10.1097/00004583-199707000-00021.

    Article  CAS  PubMed  Google Scholar 

  • Keenan, J. P., Gallup, G. C., & Falk, D. (2003). The face in the mirror: The search for the origins of consciousness. New York: HarperCollins Publishers.

    Google Scholar 

  • Kenny, E. R., O'Brien, J. T., Cousins, D. A., Richardson, J., Thomas, A. J., Firbank, M. J., et al. (2010). Functional connectivity in late-life depression using resting-state functional magnetic resonance imaging. The American Journal of Geriatric Psychiatry, 18(7), 643–651. doi:10.1097/JGP.0b013e3181cabd0e.

    Article  PubMed  Google Scholar 

  • Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., et al. (2003). The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA, 289(23), 3095–3105.

    Article  PubMed  Google Scholar 

  • Kim, B., Kim, M. K., Yoo, E., Lee, J. Y., Choe, A. Y., Yook, K. H., et al. (2013). Comparison of panic disorder with and without comorbid major depression by using brain structural magnetic resonance imaging. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 43, 188–196. doi:10.1016/j.pnpbp.2012.12.022.

    Article  Google Scholar 

  • King, J. A., Hartley, T., Spiers, H. J., Maguire, E. A., & Burgess, N. (2005). Anterior prefrontal involvement in episodic retrieval reflects contextual interference. NeuroImage, 28(1), 256–267. doi:10.1016/j.neuroimage.2005.05.057.

    Article  CAS  PubMed  Google Scholar 

  • Kircher, T. T., Senior, C., Phillips, M. L., Benson, P. J., Bullmore, E. T., Brammer, M., et al. (2000). Towards a functional neuroanatomy of self processing: effects of faces and words. Brain Research. Cognitive Brain Research, 10(1–2), 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Kircher, T. T., Brammer, M., Bullmore, E., Simmons, A., Bartels, M., & David, A. S. (2002). The neural correlates of intentional and incidental self processing. Neuropsychologia, 40(6), 683–692. doi:10.1016/S0028-3932(01)00138-5.

    Article  PubMed  Google Scholar 

  • Kjaer, T. W., Nowak, M., & Lou, H. C. (2002). Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. NeuroImage, 17(2), 1080–1086. doi:10.1006/nimg.2002.1230.

    Article  PubMed  Google Scholar 

  • Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leathers, M. L., & Olson, C. R. (2013). Response to comment on “In monkeys making value-based decisions, LIP neurons encode cue salience and not action value”. Science, 340(6131), 430. doi:10.1126/science.1233367.

    Article  CAS  PubMed  Google Scholar 

  • Leshem, R., & Glicksohn, J. (2012). A critical look at the relationship between impulsivity and decision-making in adolescents: are they related or separate factors? Developmental Neuropsychology, 37(8), 712–731. doi:10.1080/87565641.2012.718815.

    Article  PubMed  Google Scholar 

  • Li, G., Ma, X., Bian, H., Sun, X., Zhai, N., Yao, M., et al. (2015). A pilot fMRI study of the effect of stressful factors on the onset of depression in female patients. Brain Imaging and Behavior. doi:10.1007/s11682-015-9382-8.

    PubMed Central  Google Scholar 

  • Lorenzetti, V., Allen, N. B., Fornito, A., & Yucel, M. (2009). Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. Journal of Affective Disorders, 117(1–2), 1–17. doi:10.1016/j.jad.2008.11.021.

    Article  PubMed  Google Scholar 

  • Luby, J. L., Belden, A. C., Jackson, J. J., Lessov-Schlaggar, C. N., Harms, M. P., Tillman, R., et al. (2016). Early childhood depression and alterations in the trajectory of gray matter maturation in middle childhood and early adolescence. JAMA Psychiatry, 73(1), 31–38. doi:10.1001/jamapsychiatry.2015.2356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luking, K. R., Pagliaccio, D., Luby, J. L., & Barch, D. M. (2016). Reward processing and risk for depression across development. Trends in Cognitive Sciences, 20(6), 456–468. doi:10.1016/j.tics.2016.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackin, R. S., Tosun, D., Mueller, S. G., Lee, J. Y., Insel, P., Schuff, N., et al. (2013). Patterns of reduced cortical thickness in late-life depression and relationship to psychotherapeutic response. The American Journal of Geriatric Psychiatry, 21(8), 794–802. doi:10.1016/j.jagp.2013.01.013.

    Article  PubMed  Google Scholar 

  • March, J. S., Parker, J. D. A., Sullivan, K., Stallings, P., & Conners, C. K. (1997). The multidimensional anxiety scale for children (MASC): factor structure, reliability, and validity. Journal of the American Academy of Child and Adolescent Psychiatry, 36(4), 554–565. doi:10.1097/00004583-199704000-00019.

    Article  CAS  PubMed  Google Scholar 

  • Marrus, N., Belden, A., Nishino, T., Handler, T., Ratnanather, J. T., Miller, M., et al. (2015). Ventromedial prefrontal cortex thinning in preschool-onset depression. Journal of Affective Disorders, 180, 79–86. doi:10.1016/j.jad.2015.03.033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano, M., Matsuo, K., Nakashima, M., Matsubara, T., Harada, K., Egashira, K., et al. (2014). Gray matter volume and rapid decision-making in major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 48, 51–56. doi:10.1016/j.pnpbp.2013.09.011.

    Article  Google Scholar 

  • Pannekoek, J. N., van der Werff, S. J. A., van den Bulk, B. G., van Lang, N. D. J., Rombouts, S. A. R. B., van Buchem, M. A., et al. (2014). Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents. NeuroImage: Clinical, 4, 336–342. doi:10.1016/j.nicl.2014.01.007.

    Article  Google Scholar 

  • Papmeyer, M., Giles, S., Sussmann, J. E., Kielty, S., Stewart, T., Lawrie, S. M., et al. (2015). Cortical thickness in individuals at high familial risk of mood disorders as they develop major depressive disorder. Biological Psychiatry, 78(1), 58–66. doi:10.1016/j.biopsych.2014.10.018.

    Article  PubMed  Google Scholar 

  • Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51(6), 768–774.

    Article  CAS  PubMed  Google Scholar 

  • Peng, D., Shi, F., Li, G., Fralick, D., Shen, T., Qiu, M., et al. (2015). Surface vulnerability of cerebral cortex to major depressive disorder. PloS One, 10(3), e0120704. doi:10.1371/journal.pone.0120704.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perroud, N., Baud, P., Mouthon, D., Courtet, P., & Malafosse, A. (2011). Impulsivity, aggression and suicidal behavior in unipolar and bipolar disorders. Journal of Affective Disorders, 134(1–3), 112–118. doi:10.1016/j.jad.2011.05.048.

    Article  PubMed  Google Scholar 

  • Peterson, B. S., Warner, V., Bansal, R., Zhu, H., Hao, X., Liu, J., et al. (2009). Cortical thinning in persons at increased familial risk for major depression. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6273–6278. doi:10.1073/pnas.0805311106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piko, B. F., & Pinczés, T. (2014). Impulsivity, depression and aggression among adolescents. Personality and Individual Differences, 69, 33–37. doi:10.1016/j.paid.2014.05.008.

    Article  Google Scholar 

  • Platek, S. M., Wathne, K., Tierney, N. G., & Thomson, J. W. (2008). Neural correlates of self-face recognition: an effect-location meta-analysis. Brain Research, 1232, 173–184.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, L., Lui, S., Kuang, W., Huang, X., Li, J., Li, J., et al. (2014). Regional increases of cortical thickness in untreated, first-episode major depressive disorder. Translational Psychiatry, 4, e378. doi:10.1038/tp.2014.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radua, J., Phillips, M. L., Russell, T., Lawrence, N., Marshall, N., Kalidindi, S., et al. (2010). Neural response to specific components of fearful faces in healthy and schizophrenic adults. NeuroImage, 49(1), 939–946. doi:10.1016/j.neuroimage.2009.08.030.

    Article  PubMed  Google Scholar 

  • Reynolds, S., Carrey, N., Jaworska, N., Langevin, L. M., Yang, X.-R., & MacMaster, F. P. (2014). Cortical thickness in youth with major depressive disorder. BMC Psychiatry, 14(1), 83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubia, K., Lim, L., Ecker, C., Halari, R., Giampietro, V., Simmons, A., et al. (2013). Effects of age and gender on neural networks of motor response inhibition: from adolescence to mid-adulthood. NeuroImage, 83, 690–703.

    Article  PubMed  Google Scholar 

  • Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews. Neuroscience, 14(9), 609–625. doi:10.1038/nrn3381.

    Article  CAS  PubMed  Google Scholar 

  • Saddichha, S., & Scheutz, C. (2014). Impulsivity in remitted depression: a meta-analytic review. Asian Journal of Psychiatry, 9, 13–16.

    Article  PubMed  Google Scholar 

  • Schilling, C., Kuhn, S., Romanowski, A., Schubert, F., Kathmann, N., & Gallinat, J. (2012). Cortical thickness correlates with impulsiveness in healthy adults. NeuroImage, 59(1), 824–830. doi:10.1016/j.neuroimage.2011.07.058.

    Article  PubMed  Google Scholar 

  • Schilling, C., Kuhn, S., Paus, T., Romanowski, A., Banaschewski, T., Barbot, A., et al. (2013). Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Molecular Psychiatry, 18(5), 624–630. doi:10.1038/mp.2012.56.

    Article  CAS  PubMed  Google Scholar 

  • Schmaal, L., Hibar, D. P., Samann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., et al. (2016). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Molecular Psychiatry. doi:10.1038/mp.2016.60.

    Google Scholar 

  • Stephens, D. N., Duka, T., Crombag, H. S., Cunningham, C. L., Heilig, M., & Crabbe, J. C. (2010). Reward sensitivity: issues of measurement, and achieving consilience between human and animal phenotypes. Addiction Biology, 15(2), 145–168. doi:10.1111/j.1369-1600.2009.00193.x.

    Article  PubMed  Google Scholar 

  • Telzer, E. H. (2016). Dopaminergic reward sensitivity can promote adolescent health: a new perspective on the mechanism of ventral striatum activation. Developmental Cognitive Neuroscience, 17, 57–67. doi:10.1016/j.dcn.2015.10.010.

    Article  PubMed  Google Scholar 

  • Torrubia, R., Ávila, C., Moltó, J., & Caseras, X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray's anxiety and impulsivity dimensions. Personality and Individual Differences, 31(6), 837–862. doi:10.1016/S0191-8869(00)00183-5.

    Article  Google Scholar 

  • van Eijndhoven, P., van Wingen, G., Katzenbauer, M., Groen, W., Tepest, R., Fernández, G., et al. (2013). Paralimbic cortical thickness in first-episode depression: evidence for trait-related differences in mood regulation. American Journal of Psychiatry, 170(12), 1477–1486. doi:10.1176/appi.ajp.2013.12121504.

    Article  PubMed  Google Scholar 

  • Van Meter, A. R., & Youngstrom, E. A. (2015). A tale of two diatheses: temperament, BIS, and BAS as risk factors for mood disorder. Journal of Affective Disorders, 180, 170–178. doi:10.1016/j.jad.2015.03.053.

    Article  PubMed  Google Scholar 

  • Veer, I. M., Beckmann, C. F., van Tol, M.-J., Ferrarini, L., Milles, J., Veltman, D. J., et al. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Frontiers in Systems Neuroscience, 4, 41. doi:10.3389/fnsys.2010.00041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., et al. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the American Foundation for Suicide Prevention. Special thanks go to the research staff who helped collect the data for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Stevens.

Ethics declarations

Conflict of interest

Drs. Fradkin and Stevens and Ms. Bessette and Mr. Khadka declare that none of them have a conflict of interest in the research described in this article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of Hartford Hospital’s institutional review board (IRB), and met standards described in the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study. As most participants were legal minors, informed assent was accompanied by parental permission using procedures approved by the institutional IRB. This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Supplemental Figure 1

Regions showing significant difference in correlation between sensitivity to punishment and cortical thickness in depressed vs. healthy controls. (GIF 617 kb)

High resolution image (TIFF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fradkin, Y., Khadka, S., Bessette, K.L. et al. The relationship of impulsivity and cortical thickness in depressed and non-depressed adolescents. Brain Imaging and Behavior 11, 1515–1525 (2017). https://doi.org/10.1007/s11682-016-9612-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9612-8

Keywords

Navigation