Skip to main content

Advertisement

Log in

Discriminative multi-task feature selection for multi-modality classification of Alzheimer’s disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Recently, multi-task based feature selection methods have been used in multi-modality based classification of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, in traditional multi-task feature selection methods, some useful discriminative information among subjects is usually not well mined for further improving the subsequent classification performance. Accordingly, in this paper, we propose a discriminative multi-task feature selection method to select the most discriminative features for multi-modality based classification of AD/MCI. Specifically, for each modality, we train a linear regression model using the corresponding modality of data, and further enforce the group-sparsity regularization on weights of those regression models for joint selection of common features across multiple modalities. Furthermore, we propose a discriminative regularization term based on the intra-class and inter-class Laplacian matrices to better use the discriminative information among subjects. To evaluate our proposed method, we perform extensive experiments on 202 subjects, including 51 AD patients, 99 MCI patients, and 52 healthy controls (HC), from the baseline MRI and FDG-PET image data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The experimental results show that our proposed method not only improves the classification performance, but also has potential to discover the disease-related biomarkers useful for diagnosis of disease, along with the comparison to several state-of-the-art methods for multi-modality based AD/MCI classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apostolova, L. G., Hwang, K. S., Andrawis, J. P., Green, A. E., Babakchanian, S., Morra, J. H., et al. (2010). 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiology of Aging, 31, 1284–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berchtold, N. C., & Cotman, C. W. (1998). Evolution in the conceptualization of dementia and Alzheimer’s disease: greco-roman period to the 1960s. Neurobiology of Aging, 19, 173–189.

    Article  CAS  PubMed  Google Scholar 

  • Bouwman, F., Schoonenboom, S., van Der Flier, W., Van Elk, E., Kok, A., Barkhof, F., et al. (2007). CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiology of Aging, 28, 1070–1074.

    Article  CAS  PubMed  Google Scholar 

  • Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & Dementia, 3, 186–191.

    Article  Google Scholar 

  • Cai, D., He, X., Zhou, K., Han, J., Bao, H. (2007). Locality Sensitive Discriminant Analysis, in IJCAI, pp. 708–713.

  • Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 27.

    Google Scholar 

  • Chen, X., Pan, W., Kwok, J.T., Carbonell, J.G. (2009). Accelerated gradient method for multi-task sparse learning problem. in Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on, pp. 746–751.

  • Cheng, B., Zhang, D., Shen, D. (2012). Domain transfer learning for MCI conversion prediction, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, ed: Springer, pp. 82–90.

  • Dai, W., Lopez, O. L., Carmichael, O. T., Becker, J. T., Kuller, L. H., & Gach, H. M. (2009). Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging 1. Radiology, 250, 856–866.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32, 2322. e19–2322. e27.

    Article  PubMed  Google Scholar 

  • De Leon, M., Mosconi, L., Li, J., De Santi, S., Yao, Y., Tsui, W., et al. (2007). Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. Journal of Neurology, 254, 1666–1675.

    Article  PubMed  Google Scholar 

  • De Santi, S., de Leon, M. J., Rusinek, H., Convit, A., Tarshish, C. Y., Roche, A., et al. (2001). Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiology of Aging, 22, 529–539.

    Article  PubMed  Google Scholar 

  • Del Sole, A., Clerici, F., Chiti, A., Lecchi, M., Mariani, C., Maggiore, L., et al. (2008). Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 35, 1357–1366.

    Article  PubMed  Google Scholar 

  • Fan, Y., Batmanghelich, N., Clark, C. M., & Davatzikos, C. (2008). Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage, 39, 1731–1743.

    Article  PubMed  Google Scholar 

  • Fellgiebel, A., Scheurich, A., Bartenstein, P., & Müller, M. J. (2007). FDG-PET and CSF phospho-tau for prediction of cognitive decline in mild cognitive impairment. Psychiatry Research: Neuroimaging, 155, 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., et al. (2010). CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. The Journal of Neuroscience, 30, 2088–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, N. L., Heidebrink, J. L., Clark, C. M., Jagust, W. J., Arnold, S. E., Barbas, N. R., et al. (2007). FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain, 130, 2616–2635.

    Article  PubMed  Google Scholar 

  • Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., et al. (2006). Mild cognitive impairment. The Lancet, 367, 1262–1270.

    Article  Google Scholar 

  • Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A., & Rueckert, D. (2013). Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage, 65, 167–175.

    Article  PubMed  Google Scholar 

  • Higdon, R., Foster, N. L., Koeppe, R. A., DeCarli, C. S., Jagust, W. J., Clark, C. M., et al. (2004). A comparison of classification methods for differentiating fronto‐temporal dementia from Alzheimer’s disease using FDG‐PET imaging. Statistics in Medicine, 23, 315–326.

    Article  PubMed  Google Scholar 

  • Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48, 138–149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, S., Li, J., Ye, J., Wu, T., Chen, K., Fleisher, A. et al., (2011). Identifying Alzheimer’s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis. in Advances in Neural Information Processing Systems, pp. 1431–1439.

  • Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science, 225, 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  • Jie, B., Zhang, D., Cheng, B., Shen, D. (2013). Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer’s disease, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, ed: Springer, pp. 275–283.

  • Karas, G., Scheltens, P., Rombouts, S., van Schijndel, R., Klein, M., Jones, B., et al. (2007). Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology, 49, 967–976.

    Article  PubMed  Google Scholar 

  • Kira, K., & Rendell, L.A. (1992). The feature selection problem: Traditional methods and a new algorithm. in AAAI, pp. 129–134.

  • Knafo, S., Venero, C., Merino‐Serrais, P., Fernaud‐Espinosa, I., Gonzalez‐Soriano, J., Ferrer, I., et al. (2009). Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer’s disease. The Journal of Pathology, 219, 41–51.

    Article  PubMed  Google Scholar 

  • Landau, S., Harvey, D., Madison, C., Reiman, E., Foster, N., Aisen, P., et al. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75, 230–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., & Ye, J.(2010). Efficient l1/lq norm regularization. arXiv preprint arXiv:1009.4766.

  • Liu, F., Wee, C.-Y., Chen, H., & Shen, D. (2014). Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification. NeuroImage, 84, 466–475.

    Article  PubMed  Google Scholar 

  • Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L., Jonsson, M., et al. (2009). CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 302, 385–393.

    Article  CAS  PubMed  Google Scholar 

  • McEvoy, L. K., Fennema-Notestine, C., Roddey, J. C., Hagler, D. J., Jr., Holland, D., Karow, D. S., et al. (2009). Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment 1. Radiology, 251, 195–205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage, 44, 1415–1422.

    Article  PubMed  Google Scholar 

  • Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., et al. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58, 397–405.

    CAS  PubMed  Google Scholar 

  • Ng, B., & Abugharbieh, R. (2011). Generalized sparse regularization with application to fMRI brain decoding. in Information Processing in Medical Imaging, pp. 612–623.

  • Nobili, F., Salmaso, D., Morbelli, S., Girtler, N., Piccardo, A., Brugnolo, A., et al. (2008). Principal component analysis of FDG PET in amnestic MCI. European Journal of Nuclear Medicine and Molecular Imaging, 35, 2191–2202.

    Article  PubMed  Google Scholar 

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, S. P., Dautoff, R., Morris, J. C., Barrett, L. F., Dickerson, B. C., & A. s. D. N. Initiative. (2011). Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Research: Neuroimaging, 194, 7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15, 1119–1125.

    Article  Google Scholar 

  • Shaw, L. M., Vanderstichele, H., Knapik‐Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65, 403–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solodkin, A., Chen, E. E., Hoesen, G. W., Heimer, L., Shereen, A., Kruggel, F., et al. (2013). In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer’s disease. Journal of Comparative Neurology, 521, 4300–4317.

    Article  PubMed  Google Scholar 

  • Sui, J., Adali, T., Yu, Q., Chen, J., & Calhoun, V. D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204, 68–81.

    Article  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pp. 267–288.

  • Van Hoesen, G. W., & Hyman, B. T. (1990). Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Progress in Brain Research, 83, 445–457.

    Article  PubMed  Google Scholar 

  • Walhovd, K., Fjell, A., Dale, A., McEvoy, L., Brewer, J., Karow, D., et al. (2010). Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiology of Aging, 31, 1107–1121.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Stebbins, G. T., Medina, D. A., Shah, R. C., Bammer, R., & Moseley, M. E. (2012). Atrophy and dysfunction of parahippocampal white matter in mild Alzheimer’s disease. Neurobiology of Aging, 33, 43–52.

    Article  PubMed  Google Scholar 

  • Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., et al. (2012). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59, 2045–2056.

    Article  PubMed  Google Scholar 

  • Xue, H., Chen, S., & Yang, Q. (2009). Discriminatively regularized least-squares classification. Pattern Recognition, 42, 93–104.

    Article  Google Scholar 

  • Ye, J., Chen, K., Wu, T., Li, J., Zhao, Z., Patel, R. et al. (2008). Heterogeneous data fusion for alzheimer’s disease study. in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1025–1033.

  • Ye, J., Wu, T., Li, J., & Chen, K. (2011). Machine learning approaches for the neuroimaging study of Alzheimer’s disease. Computer, 44, 99–101.

    Article  Google Scholar 

  • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 68, 49–67.

    Article  Google Scholar 

  • Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55, 856–867.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Shen, D., & A. s. D. N. Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59, 895–907.

    Article  PubMed  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 67, 301–320.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by National Natural Science Foundation of China (Nos. 61422204, 61473149), the Jiangsu Natural Science Foundation for Distinguished Young Scholar (No. BK20130034), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20123218110009), the NUAA Fundamental Research Funds (No. NE2013105), and NIH grants (EB006733, EB008374, EB009634, and AG041721).

For this project, the dataset we collected and used was provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by non-profit partners the Alzheimer’s Association and Alzheimer’s Drug Discovery Foundation and the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., with participation from the U.S. Food and Drug Administration. What’s more, Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The Northern California Institute for Education and Research is the grantee organization, as well as the Alzheimer’s Disease Cooperative Study at the University of California, San Diego coordinate the study. ADNI data are disseminated by the Laboratory for Neuron Imaging at the University of California, Los Angeles.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Dinggang Shen or Daoqiang Zhang.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Zu, C., Jie, B. et al. Discriminative multi-task feature selection for multi-modality classification of Alzheimer’s disease. Brain Imaging and Behavior 10, 739–749 (2016). https://doi.org/10.1007/s11682-015-9437-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9437-x

Keywords

Navigation