Skip to main content
Log in

The Impact of Age-Related Changes on Working Memory Functional Activity

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

This work investigated associations of age-related brain atrophy and functional neural networks identified using multivariate analyses of BOLD fMRI data in young and elder participants (young, N = 37; mean age = 25; elders, N = 15; mean age = 74). Two networks were involved in retaining increasing loads of verbal information in working memory. Network utilizations were used to test associations between function and indices of grey matter volume changes using voxel based morphometry. Global changes in brain volume were not associated with the secondary network. Lower regional grey matter volume in the left pre-central gyrus within the primary network was associated with increased secondary network utilization independent of age group. Decreased regional grey matter volume was associated with increased age only in the elders. Increased secondary network expression was associated with increased slope of reaction times across memory load, in the elders. These results support the theory of neural compensation, that elder participants recruit additional neural resources to maintain task performance in the face of age-related decreases in regional grey matter volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altamura, M., Elvevag, B., Blasi, G., Bertolino, A., Callicott, J. H., Weinberger, D. R., et al. (2007). Dissociating the effects of Sternberg working memory demands in prefrontal cortex. Psychiatry Research, 154(2), 103–114. doi:10.1016/j.pscychresns.2006.08.002.

    Article  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6 Pt 1), 805–821. doi:10.1006/nimg.2000.0582.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851. doi:10.1016/j.neuroimage.2005.02.018.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric.

    Google Scholar 

  • Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging, 12(1), 12–21. doi:10.1037/0882-7974.12.1.12.

    Article  PubMed  CAS  Google Scholar 

  • Brickman, A. M., & Buchsbaum, M. S. (2008). Alzheimer’s disease: Neurostructures. In J. H. Byrne (Ed.), Learning and Memory: A Comprehensive Refernce, vol. 3 pp. 601–621. New York: Elsevier.

  • Brickman, A. M., Zimmerman, M. E., Paul, R. H., Grieve, S. M., Tate, D. F., Cohen, R. A., et al. (2006). Regional white matter and neuropsychological functioning across the adult lifespan. Biological Psychiatry, 60(5), 444–453. doi:10.1016/j.biopsych.2006.01.011.

    Article  PubMed  Google Scholar 

  • Brickman, A. M., Habeck, C., Zarahn, E., Flynn, J., & Stern, Y. (2007). Structural MRI covariance patterns associated with normal aging and neuropsychological functioning. Neurobiology of Aging, 28(2), 284–295. doi:10.1016/j.neurobiolaging.2005.12.016.

    Article  PubMed  Google Scholar 

  • Brickman, A. M., Habeck, C., Ramos, M. S., Scarmeas, N., & Yearn, S. A forward application of age associated gray and white matter networks. Human Brain Mapping, 29(10), 1139–1146.

  • Busatto, G. F., Garrido, G. E. J., Almeida, O. P., Castro, C. C., Camargo, C. H. P., Cid, C. G., et al. (2003). A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer’s disease. Neurobiology of Aging, 24(2), 221–231. doi:10.1016/S0197-4580(02)00084-2.

    Article  PubMed  Google Scholar 

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100. doi:10.1037/0882-7974.17.1.85.

    Article  PubMed  Google Scholar 

  • Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002a). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402. doi:10.1006/nimg.2002.1280.

    Article  PubMed  Google Scholar 

  • Cabeza, R., Dolcos, F., Graham, R., & Nyberg, L. (2002b). Similarities and differences in the neural correlates of episodic memory retrieval and working memory. NeuroImage, 16(2), 317–330. doi:10.1006/nimg.2002.1063.

    Article  PubMed  Google Scholar 

  • Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004a). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex (New York, N.Y.), 14(4), 364–375. doi:10.1093/cercor/bhg133.

    Article  Google Scholar 

  • Chard, D. T., Parker, G. J., Griffin, C. M., Thompson, A. J., & Miller, D. H. (2002). The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. Journal of Magnetic Resonance Imaging, 15(3), 259–267. doi:10.1002/jmri.10064.

    Article  PubMed  Google Scholar 

  • Cook, I. A., Leuchter, A. F., Morgan, M. L., Conlee, E. W., David, S., Lufkin, R., et al. (2002). Cognitive and physiologic correlates of subclinical structural brain disease in elderly healthy control subjects. Archives of Neurology, 59(10), 1612–1620. doi:10.1001/archneur.59.10.1612.

    Article  PubMed  Google Scholar 

  • Dennis, N. A., Kim, H., & Cabeza, R. (2007). Effects of aging on true and false memory formation: An fMRI study. Neuropsychologia, 45(14), 3157–3166. doi:10.1016/j.neuropsychologia.2007.07.003.

    Article  PubMed  Google Scholar 

  • Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., & Buckner, R. L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 64(6), 1032–1039.

    PubMed  CAS  Google Scholar 

  • Friston, K. J., Holmes, A. P., Price, C. J., Buchel, C., & Worsley, K. J. (1999). Multisubject fMRI studies and conjunction analyses. NeuroImage, 10(4), 385–396. doi:10.1006/nimg.1999.0484.

    Article  PubMed  CAS  Google Scholar 

  • Gazzaley, A., Sheridan, M. A., Cooney, J. W., & D’Esposito, M. (2007). Age-related deficits in component processes of working memory. Neuropsychology, 21(5), 532–539. doi:10.1037/0894-4105.21.5.532.

    Article  PubMed  Google Scholar 

  • Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001a). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3), 685–700. doi:10.1006/nimg.2001.0857.

    Article  PubMed  CAS  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001b). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36. doi:10.1006/nimg.2001.0786.

    Article  PubMed  CAS  Google Scholar 

  • Gunning-Dixon, F. M., & Raz, N. (2003). Neuroanatomical correlates of selected executive functions in middle-aged and older adults: A prospective MRI study. Neuropsychologia, 41(14), 1929–1941. doi:10.1016/S0028-3932(03)00129-5.

    Article  PubMed  Google Scholar 

  • Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., et al. (2004). An event-related fMRI study of the neurobehavioral impact of sleep deprivation on performance of a delayed-match-to-sample task. Brain Research. Cognitive Brain Research, 18(3), 306–321. doi:10.1016/j.cogbrainres.2003.10.019.

    Article  PubMed  Google Scholar 

  • Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., et al. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Brain Research. Cognitive Brain Research, 23(2–3), 207–220. doi:10.1016/j.cogbrainres.2004.10.010.

    Article  PubMed  Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 89(12), 5675–5679. doi:10.1073/pnas.89.12.5675.

    Article  PubMed  CAS  Google Scholar 

  • Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: Dissociable neural mechanisms associated with aging. Neuron, 33(5), 827–840. doi:10.1016/S0896-6273(02)00612-8.

    Article  PubMed  CAS  Google Scholar 

  • Macwhinney, B., Cohen, J., & Provost, J. (1997). The PsyScope experiment-building system. Spatial Vision, 11(1), 99–101. doi:10.1163/156856897X00113.

    Article  PubMed  CAS  Google Scholar 

  • McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682. doi:10.1016/j.neuropsychologia.2008.04.023.

    Article  PubMed  Google Scholar 

  • Muller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139(1), 51–58. doi:10.1016/j.neuroscience.2005.09.018.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, H. E., & O’Connell, A. (1978). Dementia: the estimation of premorbid intelligence levels using the new adult reading test. Cortex, 14(2), 234–244.

    PubMed  CAS  Google Scholar 

  • Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., et al. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64(3), 803–812.

    Article  PubMed  CAS  Google Scholar 

  • Parkin, A. J., & Walter, B. M. (1992). Recollective experience, normal aging, and frontal dysfunction. Psychology and Aging, 7(2), 290–298. doi:10.1037/0882-7974.7.2.290.

    Article  PubMed  CAS  Google Scholar 

  • Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342–345. doi:10.1038/362342a0.

    Article  PubMed  CAS  Google Scholar 

  • Raz, N., Gunning-Dixon, F. M., Head, D., Dupuis, J. H., & Acker, J. D. (1998). Neuroanatomical correlates of cognitive aging: Evidence from structural magnetic resonance imaging. Neuropsychology, 12(1), 95–114. doi:10.1037/0894-4105.12.1.95.

    Article  PubMed  CAS  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex (New York, N.Y.), 15(11), 1676–1689. doi:10.1093/cercor/bhi044.

    Article  Google Scholar 

  • Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30(6), 730–748. doi:10.1016/j.neubiorev.2006.07.001.

    Article  PubMed  Google Scholar 

  • Raz, N., Rodrigue, K. M., & Haacke, E. M. (2007). Brain aging and its modifiers: insights from in vivo neuromorphometry and susceptibility weighted imaging. Annals of the New York Academy of Sciences, 1097, 84–93. doi:10.1196/annals.1379.018.

    Article  PubMed  Google Scholar 

  • Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6558–6563. doi:10.1073/pnas.96.11.6558.

    Article  PubMed  CAS  Google Scholar 

  • Scarmeas, N., & Stern, Y. (2004). Cognitive reserve: Implications for diagnosis and prevention of Alzheimer’s disease. Current Neurology and Neuroscience Reports, 4(5), 374–380. doi:10.1007/s11910-004-0084-7.

    Article  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Stern, Y., Sano, M., Paulson, J., & Mayeux, R. (1987). Modified mini-mental state examination: Validity and reliability. Neurology, 37, 179.

    Google Scholar 

  • Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, H. J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex (New York, N.Y.), 15(4), 394–402. doi:10.1093/cercor/bhh142.

    Article  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(736), 652–654. doi:10.1126/science.153.3736.652.

    Article  PubMed  CAS  Google Scholar 

  • Tisserand, D. J., van Boxtel, M. P., Pruessner, J. C., Hofman, P., Evans, A. C., & Jolles, J. (2004). A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cerebral Cortex (New York, N.Y.), 14(9), 966–973. doi:10.1093/cercor/bhh057.

    Article  Google Scholar 

  • Worsley, K. J., Poline, J. B., Friston, K. J., & Evans, A. C. (1997). Characterizing the response of PET and fMRI data using multivariate linear models. NeuroImage, 6(4), 305–319. doi:10.1006/nimg.1997.0294.

    Article  PubMed  CAS  Google Scholar 

  • Yordanova, J., Kolev, V., Hohnsbein, J., & Falkenstein, M. (2004). Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: Evidence from high-resolution event-related potentials. Brain, 127(2), 351–362. doi:10.1093/brain/awh042.

    Article  PubMed  Google Scholar 

  • Zarahn, E. (2000). Testing for neural responses during temporal components of trials with BOLD fMRI. NeuroImage, 11(6 Pt 1), 783–796. doi:10.1006/nimg.2000.0560.

    Article  PubMed  CAS  Google Scholar 

  • Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2005). Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli. Cerebral Cortex (New York, N.Y.), 15(3), 303–316. doi:10.1093/cercor/bhh132.

    Article  Google Scholar 

  • Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging, 28(5), 784–798. doi:10.1016/j.neurobiolaging.2006.03.002.

    Article  PubMed  Google Scholar 

  • Zimmerman, M. E., Brickman, A. M., Paul, R. H., Grieve, S. M., Tate, D. F., Gunstad, J., et al. (2006). The relationship between frontal gray matter volume and cognition varies across the healthy adult lifespan. The American Journal of Geriatric Psychiatry, 14(10), 823–833. doi:10.1097/01.JGP.0000238502.40963.ac.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by National Institute on Aging grant 5R01AG026158-05 awarded to Y.S.

Disclosure statement

The authors hereby declare that they have no current, past, or anticipated conflicts of interest, whether real or potential. All participants supplied written informed consent in accord with Columbia University Medical Center IRB procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Steffener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steffener, J., Brickman, A.M., Rakitin, B.C. et al. The Impact of Age-Related Changes on Working Memory Functional Activity. Brain Imaging and Behavior 3, 142–153 (2009). https://doi.org/10.1007/s11682-008-9056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-008-9056-x

Keywords

Navigation