Skip to main content
Log in

Sehnenheilung nach Rotatorenmanschettenrekonstruktion

Biologische Aspekte

Tendon healing after rotator cuff repair

Biological aspects

  • Übersicht
  • Published:
Obere Extremität Aims and scope Submit manuscript

Zusammenfassung

Trotz technischer und biomechanischer Weiterentwicklungen von Rekonstruktionstechniken der Rotatorenmanschette (RM) konnten nur geringe Fortschritte hinsichtlich der Rate von Redefekten bzw. Rerupturen erzielt werden. Neuartige Defektmuster legen den Verdacht der Sehnenstrangulation nahe und verlagerten den wissenschaftlichen Fokus auf die Adressierung auch biologischer Charakteristika. Der vorliegende Artikel stellt eine aktuelle Literaturübersicht zu biologischen Aspekten der RM-Reintegration dar. Dazu werden experimentelle sowie klinische Arbeiten gegenübergestellt, welche den Einfluss von Wachstumsfaktoren und Grafts bzw. Scaffolds untersuchen.

Zusammengefasst existieren vielversprechende Ansätze zur biologischen Augmentierung, wovon jedoch bisher nur wenige den Transfer in die klinische Anwendung erfahren haben.

Abstract

Despite biomechanical and technical developments in rotator cuff repair techniques, only limited improvement has been achieved with regard to re-defect or re-tear rates. New re-defect patterns suggest potential tendon strangulation and have shifted the scientific focus towards the biological requirements of successful rotator cuff reintegration. The present article summarizes current studies on biological aspects of rotator cuff repair augmentation. Experimental and clinical studies on growth factors and scaffolds are presented.

Although several promising approaches in this regard are available, only few have been transferred to clinical application so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Abate M, Schiavone C, Di Carlo L et al (2013) Prevalence of and risk factors for asymptomatic rotator cuff tears in postmenopausal women. Menopause

  2. Adams JE, Zobitz ME, Reach JS Jr et al (2006) Rotator cuff repair using an acellular dermal matrix graft: an in vivo study in a canine model. Arthroscopy 22:700–709

    Article  PubMed  Google Scholar 

  3. Barber FA (2013) Platelet-rich plasma for rotator cuff repair. Sports Med Arthrosc 21:199–205

    Article  PubMed  Google Scholar 

  4. Barber FA, Aziz-Jacobo J (2009) Biomechanical testing of commercially available soft-tissue augmentation materials. Arthroscopy 25:1233–1239

    Article  PubMed  Google Scholar 

  5. Barber FA, Burns JP, Deutsch A et al (2012) A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy 28:8–15

    Article  PubMed  Google Scholar 

  6. Benjamin M, Kumai T, Milz S et al (2002) The skeletal attachment of tendons–tendon „entheses“. Comp Biochem Physiol A Mol Integr Physiol 133:931–945

    Article  CAS  PubMed  Google Scholar 

  7. Boileau P, Brassart N, Watkinson DJ et al (2005) Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am 87:1229–1240

    Article  PubMed  Google Scholar 

  8. Bond JL, Dopirak RM, Higgins J et al (2008) Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthroscopy 24:403–409, e401

    Article  PubMed  Google Scholar 

  9. Boswell SG, Schnabel LV, Mohammed HO et al (2014) Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons. Am J Sports Med 42:42–49

    Article  PubMed  Google Scholar 

  10. Breidenbach AP, Gilday SD, Lalley AL et al (2014) Functional tissue engineering of tendon: establishing biological success criteria for improving tendon repair. J Biomech 47:1941–1948

    Article  PubMed  Google Scholar 

  11. Buckley MR, Evans EB, Matuszewski PE et al (2013) Distributions of types I, II and III collagen by region in the human supraspinatus tendon. Connect Tissue Res 54:374–379

    Article  CAS  PubMed  Google Scholar 

  12. Carbone S, Gumina S, Arceri V et al (2012) The impact of preoperative smoking habit on rotator cuff tear: cigarette smoking influences rotator cuff tear sizes. J Shoulder Elbow Surg 21:56–60

    Article  PubMed  Google Scholar 

  13. Carpenter JE, Thomopoulos S, Flanagan CL et al (1998) Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elbow Surg 7:599–605

    Article  CAS  PubMed  Google Scholar 

  14. Chahal J, Van Thiel GS, Mall N et al (2012) The role of platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with quantitative synthesis. Arthroscopy 28:1718–1727

    Article  PubMed  Google Scholar 

  15. Chang CH, Chen CH, Su CY et al (2009) Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histological study in rabbits. Knee Surg Sports Traumatol Arthrosc 17:1447–1453

    Article  PubMed  Google Scholar 

  16. Chaudhury S, Holland C, Thompson MS et al (2012) Tensile and shear mechanical properties of rotator cuff repair patches. J Shoulder Elbow Surg 21:1168–1176

    Article  PubMed  Google Scholar 

  17. Chen J, Xu J, Wang A et al (2009) Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices 6:61–73

    Article  PubMed  Google Scholar 

  18. Chen M, Xu W, Dong Q et al (2013) Outcomes of single-row versus double-row arthroscopic rotator cuff repair: a systematic review and meta-analysis of current evidence. Arthroscopy 29:1437–1449

    Article  PubMed  Google Scholar 

  19. Christoforetti JJ, Krupp RJ, Singleton SB et al (2012) Arthroscopic suture bridge transosseus equivalent fixation of rotator cuff tendon preserves intratendinous blood flow at the time of initial fixation. J Shoulder Elbow Surg 21:523–530

    Article  PubMed  Google Scholar 

  20. Chuen FS, Chuk CY, Ping WY et al (2004) Immunohistochemical characterization of cells in adult human patellar tendons. J Histochem Cytochem 52:1151–1157

    Article  CAS  PubMed  Google Scholar 

  21. Clayton RA, Court-Brown CM (2008) The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury 39:1338–1344

    Article  PubMed  Google Scholar 

  22. DeFranco MJ, Bershadsky B, Ciccone J et al (2007) Functional outcome of arthroscopic rotator cuff repairs: a correlation of anatomic and clinical results. J Shoulder Elbow Surg 16:759–765

    Article  PubMed  Google Scholar 

  23. DeHaan AM, Axelrad TW, Kaye E et al (2012) Does double-row rotator cuff repair improve functional outcome of patients compared with single-row technique? A systematic review. Am J Sports Med 40:1176–1185

    Article  PubMed  Google Scholar 

  24. Denard PJ, Jiwani AZ, Ladermann A et al (2012) Long-term outcome of arthroscopic massive rotator cuff repair: the importance of double-row fixation. Arthroscopy 28:909–915

    Article  PubMed  Google Scholar 

  25. Derwin KA, Baker AR, Spragg RK et al (2006) Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am 88:2665–2672

    Article  PubMed  Google Scholar 

  26. Derwin KA, Badylak SF, Steinmann SP et al (2010) Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg 19:467–476

    Article  PubMed  Google Scholar 

  27. Duquin TR, Buyea C, Bisson LJ (2010) Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am J Sports Med 38:835–841

    Article  PubMed  Google Scholar 

  28. Galatz LM, Sandell LJ, Rothermich SY et al (2006) Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res 24:541–550

    Article  CAS  PubMed  Google Scholar 

  29. Gerber C, Schneeberger AG, Perren SM et al (1999) Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am 81:1281–1290

    CAS  PubMed  Google Scholar 

  30. Goutallier D, Postel JM, Gleyze P et al (2003) Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg 12:550–554

    Article  PubMed  Google Scholar 

  31. Grasso A, Milano G, Salvatore M et al (2009) Single-row versus double-row arthroscopic rotator cuff repair: a prospective randomized clinical study. Arthroscopy 25:4–12

    Article  PubMed  Google Scholar 

  32. Gulotta LV, Rodeo SA (2009) Growth factors for rotator cuff repair. Clin Sports Med 28:13–23

    Article  PubMed  Google Scholar 

  33. Gumina S, Arceri V, Carbone S et al (2013) The association between arterial hypertension and rotator cuff tear: the influence on rotator cuff tear sizes. J Shoulder Elbow Surg 22:229–232

    Article  PubMed  Google Scholar 

  34. Gumina S, Candela V, Passaretti D et al (2014) The association between body fat and rotator cuff tear: the influence on rotator cuff tear sizes. J Shoulder Elbow Surg 23:1669–1674

    Article  PubMed  Google Scholar 

  35. Hakimi O, Murphy R, Stachewicz U et al (2012) An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair. Eur Cell Mater 24:344–357. (discussion 357)

    CAS  PubMed  Google Scholar 

  36. Hakimi O, Mouthuy PA, Carr A (2013) Synthetic and degradable patches: an emerging solution for rotator cuff repair. Int J Exp Pathol 94:287–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hayashida K, Tanaka M, Koizumi K et al (2012) Characteristic retear patterns assessed by magnetic resonance imaging after arthroscopic double-row rotator cuff repair. Arthroscopy 28:458–464

    Article  PubMed  Google Scholar 

  38. Iannotti JP, Codsi MJ, Kwon YW et al (2006) Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am 88:1238–1244

    Article  PubMed  Google Scholar 

  39. Ide J, Kikukawa K, Hirose J et al (2009) Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats. J Shoulder Elbow Surg 18:288–295

    Article  PubMed  Google Scholar 

  40. Jo CH, Kim JE, Yoon KS et al (2011) Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study. Am J Sports Med 39:2082–2090

    Article  PubMed  Google Scholar 

  41. Jo CH, Shin JS, Lee YG et al (2013) Platelet-rich plasma for arthroscopic repair of large to massive rotator cuff tears: a randomized, single-blind, parallel-group trial. Am J Sports Med 41:2240–2248

    Article  PubMed  Google Scholar 

  42. Kang HJ, Kang ES (1999) Ideal concentration of growth factors in rabbit’s flexor tendon culture. Yonsei Med J 40:26–29

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi M, Itoi E, Minagawa H et al (2006) Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elbow Surg 15:371–377

    Article  PubMed  Google Scholar 

  44. Liem D, Dedy NJ, Hauschild G et al (2013) In vivo blood flow after rotator cuff reconstruction in a sheep model: comparison of single versus double row. Knee Surg Sports Traumatol Arthrosc 23(2):470–477. doi: 10.1007/s00167-013-2429–8

  45. Lohr JF, Uhthoff HK (2007) Epidemiology and pathophysiology of rotator cuff tears. Orthopade 36:788–795

    Article  CAS  PubMed  Google Scholar 

  46. Ma CB, Kawamura S, Deng XH et al (2007) Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med 35:597–604

    Article  PubMed  Google Scholar 

  47. Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–496

    Article  PubMed  Google Scholar 

  48. Matthews TJ, Hand GC, Rees JL et al (2006) Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J Bone Joint Surg Br 88:489–495

    Article  CAS  PubMed  Google Scholar 

  49. Matthews TJ, Smith SR, Peach CA et al (2007) In vivo measurement of tissue metabolism in tendons of the rotator cuff: implications for surgical management. J Bone Joint Surg Br 89:633–638

    Article  CAS  PubMed  Google Scholar 

  50. McCarron JA, Derwin KA, Bey MJ et al (2013) Failure with continuity in rotator cuff repair „healing“. Am J Sports Med 41:134–141

    Article  PubMed  Google Scholar 

  51. Mihelic R, Pecina M, Jelic M et al (2004) Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med 32:1619–1625

    Article  PubMed  Google Scholar 

  52. Milgrom C, Schaffler M, Gilbert S et al (1995) Rotator-cuff changes in asymptomatic adults. The effect of age, hand dominance and gender. J Bone Joint Surg Br 77:296–298

    CAS  PubMed  Google Scholar 

  53. Molloy T, Wang Y, Murrell G (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33:381–394

    Article  PubMed  Google Scholar 

  54. Moraes VY, Lenza M, Tamaoki MJ et al (2014) Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev 4:CD010071

    PubMed  Google Scholar 

  55. de Mos M, van der Windt AE, Jahr H et al (2008) Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sports Med 36:1171–1178

    Article  PubMed  Google Scholar 

  56. Nicklin S, Morris H, Yu Y et al (2000) OP-1 augmentation of tendon-bone healing in an ovine ACL reconstruction. Trans Orthop Res Soc 25:155

    Google Scholar 

  57. Pauly S, Gerhardt C, Chen J et al (2010) Single versus double-row repair of the rotator cuff: does double-row repair with improved anatomical and biomechanical characteristics lead to better clinical outcome? Knee Surg Sports Traumatol Arthrosc 18:1718–1729

    Article  PubMed  Google Scholar 

  58. Pauly S, Klatte F, Strobel C et al (2010) Characterization of tendon cell cultures of the human rotator cuff. Eur Cell Mater 20:84–97

    CAS  PubMed  Google Scholar 

  59. Pauly S, Klatte F, Strobel C et al (2011) BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro. J Shoulder Elbow Surg 21:464–473

    Article  PubMed  Google Scholar 

  60. Perser K, Godfrey D, Bisson L (2011) Meta-analysis of clinical and radiographic outcomes after arthroscopic single-row versus double-row rotator cuff Repair. Sports Health 3:268–274

    Article  PubMed Central  PubMed  Google Scholar 

  61. Prasathaporn N, Kuptniratsaikul S, Kongrukgreatiyos K (2011) Single-row repair versus double-row repair of full-thickness rotator cuff tears. Arthroscopy 27:978–985

    Article  PubMed  Google Scholar 

  62. Reverchon E, Baldino L, Cardea S et al (2012) Biodegradable synthetic scaffolds for tendon regeneration. Muscles Ligaments Tendons J 2:181–186

    PubMed Central  PubMed  Google Scholar 

  63. Rhee YG, Cho NS, Yoo JH (2014) Clinical outcome and repair integrity after rotator cuff repair in patients older than 70 years versus patients younger than 70 years. Arthroscopy 30:546–554

    Article  PubMed  Google Scholar 

  64. Robinson PM, Wilson J, Dalal S et al (2013) Rotator cuff repair in patients over 70 years of age: early outcomes and risk factors associated with re-tear. Bone Joint J 95-B 199–205

    Article  CAS  PubMed  Google Scholar 

  65. Rodeo SA (2007) Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg 16:191–197

    Article  Google Scholar 

  66. Rodeo SA, Arnoczky SP, Torzilli PA et al (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75:1795–1803

    CAS  PubMed  Google Scholar 

  67. Rodeo SA, Suzuki K, Deng XH et al (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27:476–488

    CAS  PubMed  Google Scholar 

  68. Rodeo SA, Delos D, Williams RJ et al (2012) The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med 40:1234–1241

    Article  PubMed  Google Scholar 

  69. Ruiz-Moneo P, Molano-Munoz J, Prieto E et al (2013) Plasma rich in growth factors in arthroscopic rotator cuff repair: a randomized, double-blind, controlled clinical trial. Arthroscopy 29:2–9

    Article  PubMed  Google Scholar 

  70. Sadoghi P, Lohberger B, Aigner B et al (2013) Effect of platelet-rich plasma on the biologic activity of the human rotator-cuff fibroblasts: a controlled in vitro study. J Orthop Res 31:1249–1253

    Article  CAS  PubMed  Google Scholar 

  71. Saridakis P, Jones G (2010) Outcomes of single-row and double-row arthroscopic rotator cuff repair: a systematic review. J Bone Joint Surg Am 92:732–742

    Article  PubMed  Google Scholar 

  72. Scheibel M, Brown A, Woertler K et al (2007) Preliminary results after rotator cuff reconstruction augmented with an autologous periosteal flap. Knee Surg Sports Traumatol Arthrosc 15:305–314

    Article  PubMed  Google Scholar 

  73. Seeherman HJ, Archambault JM, Rodeo SA et al (2008) rhBMP-12 accelerates healing of rotator cuff repairs in a sheep model. J Bone Joint Surg Am 90:2206–2219

    Article  PubMed  Google Scholar 

  74. Sheibani-Rad S, Giveans MR, Arnoczky SP et al (2013) Arthroscopic single-row versus double-row rotator cuff repair: a meta-analysis of the randomized clinical trials. Arthroscopy 29:343–348

    Article  PubMed  Google Scholar 

  75. Sheth U, Simunovic N, Klein G et al (2012) Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am 94:298–307

    Article  PubMed  Google Scholar 

  76. Slater M, Patava J, Kingham K et al (1995) Involvement of platelets in stimulating osteogenic activity. J Orthop Res 13:655–663

    Article  CAS  PubMed  Google Scholar 

  77. St Pierre P, Olson EJ, Elliott JJ et al (1995) Tendon-healing to cortical bone compared with healing to a cancellous trough. A biomechanical and histological evaluation in goats. J Bone Joint Surg Am 77:1858–1866

    CAS  PubMed  Google Scholar 

  78. Thomopoulos S, Hattersley G, Rosen V et al (2002) The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J Orthop Res 20:454–463

    Article  CAS  Google Scholar 

  79. Thomopoulos S, Harwood FL, Silva MJ et al (2005) Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J Hand Surg Am 30:441–447

    Article  PubMed  Google Scholar 

  80. Thomopoulos S, Das R, Sakiyama-Elbert S et al (2010) bFGF and PDGF-BB for tendon repair: controlled release and biologic activity by tendon fibroblasts in vitro. Ann Biomed Eng 38:225–234

    Article  PubMed Central  PubMed  Google Scholar 

  81. Trantalis JN, Boorman RS, Pletsch K et al (2008) Medial rotator cuff failure after arthroscopic double-row rotator cuff repair. Arthroscopy 24:727–731

    Article  PubMed  Google Scholar 

  82. Tsai AD, Yeh LC, Lee JC (2003) Effects of osteogenic protein-1 (OP-1, BMP-7) on gene expression in cultured medial collateral ligament cells. J Cell Biochem 90:777–791

    Article  CAS  PubMed  Google Scholar 

  83. Verma NN, Bhatia S, Baker CL 3rd et al (2010) Outcomes of arthroscopic rotator cuff repair in patients aged 70 years or older. Arthroscopy 26:1273–1280

    Article  PubMed  Google Scholar 

  84. Walton JR, Bowman NK, Khatib Y et al (2007) Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am 89:786–791

    Article  PubMed  Google Scholar 

  85. Weber SC, Kauffman JI, Parise C et al (2013) Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med 41:263–270

    Article  PubMed  Google Scholar 

  86. Wong I, Burns J, Snyder S (2010) Arthroscopic Graft Jacket repair of rotator cuff tears. J Shoulder Elbow Surg 19:104–109

    Article  PubMed  Google Scholar 

  87. Wurgler-Hauri CC, Dourte LM, Baradet TC et al (2007) Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg 16:198–203

    Article  Google Scholar 

  88. Xu C, Zhao J, Li D (2013) Meta-analysis comparing single-row and double-row repair techniques in the arthroscopic treatment of rotator cuff tears. J Shoulder Elbow Surg 23(2):182–188. doi: 10.1016/j.jse.2013.08.005

  89. Yamada M, Akeda K, Asanuma K et al (2008) Effect of osteogenic protein-1 on the matrix metabolism of bovine tendon cells. J Orthop Res 26:42–48

    Article  CAS  PubMed  Google Scholar 

  90. Yamaguchi K, Ditsios K, Middleton WD et al (2006) The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am 88:1699–1704

    Article  PubMed  Google Scholar 

  91. Yamakado K, Katsuo S, Mizuno K et al (2010) Medial-row failure after arthroscopic double-row rotator cuff repair. Arthroscopy 26:430–435

    Article  Google Scholar 

  92. Yamamoto A, Takagishi K, Osawa T et al (2010) Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg 19:116–120

    Article  PubMed  Google Scholar 

  93. Yeh LC, Tsai AD, Lee JC (2008) Bone morphogenetic protein-7 regulates differentially the mRNA expression of bone morphogenetic proteins and their receptors in rat achilles and patellar tendon cell cultures. J Cell Biochem 104:2107–2122

    Article  CAS  PubMed  Google Scholar 

  94. Yuan J, Murrell GA, Wei AQ et al (2002) Apoptosis in rotator cuff tendonopathy. J Orthop Res 20:1372–1379

    Article  PubMed  Google Scholar 

  95. Zhang Q, Ge H, Zhou J et al (2013) Single-row or double-row fixation technique for full-thickness rotator cuff tears: a meta-analysis. PLoS One 8:e68515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pauly.

Ethics declarations

Interessenkonflikt

S. Pauly, C. Gerhardt und M. Scheibel geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauly, S., Gerhardt, C. & Scheibel, M. Sehnenheilung nach Rotatorenmanschettenrekonstruktion. Obere Extremität 10, 17–23 (2015). https://doi.org/10.1007/s11678-015-0305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11678-015-0305-5

Schlüsselwörter

Keywords

Navigation