Skip to main content
Log in

Ground vegetation, forest floor and mineral topsoil in a clear-cutting and reforested Scots pine stands of different ages: a case study

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Scots pine (Pinus sylvestris L.) is a dominant tree species on nutrient-poor sandy soils in the Baltic region's hemiboreal forests. A final clear-cut in commercial stands is a common practice. However, the maintenance of relatively stable vegetation indices and ecological processes throughout the rotation promote new scientific and social debates. Overall, clear-cuttings disturb forest functions for a certain period, i.e., phytocenoses with forest-based species composition, biodiversity, and vegetation cover. Soil organic carbon (SOC) and nutrients can also be affected. As key indices, ground vegetation, SOC and main nutrients in the forest floor and in 40-cm topsoil layer were analysed in the clear-cuttings (not reforested) and in reforested 10-, 30-, and 101-year-old Scots pine stands in 2020. The results show an increase in species richness at the beginning of stand formation up to 30 years after clear-cutting; species typical of a mature forest occurred relatively quickly post-harvest. The mean mass of forest floor vegetation was negatively related to the richness of ground vegetation species. Forest floor pH consequently decreased with stand age. Higher SOC levels were in the mature stand. In the mineral topsoil layers, total SOC and total nitrogen were in the upper 10-cm layer in the 30-year-old stand. A post-harvest peak in mineral N concentration was observed and other nutrients, especially mobile P2O5, K2O, Ca2+ and Mg2+, increased the clear-cuttings and in the 10-year-old stand compared to the mature stand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achat DL, Fortin M, Landmann G, Ringeval B, Augusto L (2015) Forest soil carbon is threatened by intensive biomass harvesting. Sci Rep 5:1–10

    Article  Google Scholar 

  • Achat DL, Deleuze C, Landmann G, Pousse N, Ranger J, Augusto L (2015a) Quantifying consequences of removing harvesting residues on forest soils and tree growth—a meta-analysis. For Ecol Manag 348:124–141

    Article  Google Scholar 

  • Armolaitis K, Varnagirytė-Kabašinskienė I, Mikšys V, Stupak Møller I (2008) Maisto medžiagų nuostoliai dėl miško kuro ruošos brukniniuose pušynuose [The losses of the nutrients from Scots pine stands due to the forest fuel extraction]. Miškininkystė [forest Science] 1(63):7–17 ((in Lithuanian with English summary))

    Google Scholar 

  • Armolaitis K, Varnagirytė-Kabašinskienė I, Stupak I, Mikšys V, Kukkola M, Wójcik J (2013) Carbon and nutrients of Scots pine stands on sandy soils in Lithuania in relation to bioenergy sustainability. Biomass Bioenerg 54:250–259

    Article  CAS  Google Scholar 

  • Armolaitis K, Stakėnas V, Varnagirytė-Kabašinskienė I, Gudauskienė A, Žemaitis P (2018) Leaching of organic carbon and plant nutrients at clear cutting of Scots pine stand on Arenosol. Baltic for 1(24):50–59

    Google Scholar 

  • Augusto L, Dupouey JL, Ranger J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann for Sci 60(8):823–831

    Article  Google Scholar 

  • Battles J, Shlisky AJ, Barrett R, Heald R, Allen-Diaz B (2001) The effects of forest management on plant species diversity in a Sierran conifer forest. For Ecol Manag 146:211–222

    Article  Google Scholar 

  • Bergholm J, Olsson B, Vegerfors B, Persson T (2015) Nitrogen fluxes after clear-cutting. Ground vegetation uptake and stump/root immobilisation reduce N leaching after experimental liming, acidification and N fertilisation. For Ecol Manag 342:64–75

    Article  Google Scholar 

  • Buivydaitė VV, Vaičys M, Juodis J, Motuzas A (2001) Lietuvos dirvožemių klasifikacija. [Classification of soils in Lithuania]. Vilnius, Lithuania: Lietuvos mokslas, p. 139 (in Lithuanian).

  • Canullo R, Starlinger F, Granke O, Fischer R, Aamlid D, Neville P (2011) Assessment of Ground Vegetation. Manual Part VII.1. In: ICP Forests Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Hamburg, Germany: UNECE ICP Forests Programme Co-ordinating Centre.

  • Česonienė L, Daubaras R, Tamutis V, Kaškonienė V, Kaškonas P, Stakėnas V, Zych M (2019) Effect of clear-cutting on the understory vegetation, soil and diversity of litter beetles in scots pine-dominated forest. J Sustain for 38(8):791–808

    Article  Google Scholar 

  • Égnér H, Riehm H, Domingo WR (1960) Untersuchungen iber die chemische Bodenanalyse als Grundlag fur die Beurteilunger des Nahrstoffzustandes der Boden, II: Chemische Extractionsmethoden zur Phosphor, und Kalium-bestimmung. Kunglia Lantbrukshogskolans Annaler 26:199–215

    Google Scholar 

  • Ehlers T, Berch SM, MacKinnon A (2003) Inventory of non-timber forest product plant and fungal species in the Robson Valley. BCJEM 4:1–15

    Google Scholar 

  • Finér L, Mannerkoski H, Piirainen S, Starr M (2003) Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. For Ecol Manag 174:51–63

    Article  Google Scholar 

  • Finér L, Jurgensen MF, Palviainen M, Piirainen S, Page-Dumroese D (2016) Does clear-cut harvesting accelerate initial wood decomposition? A five-year study with standard wood material. For Ecol Manag 372:10–18

    Article  Google Scholar 

  • Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests – effects of air pollution and forest management. Environ Rev 14:1–57

    Article  CAS  Google Scholar 

  • Hekkala AM, Tarvainen O, Tolvanen A (2014) Dynamics of understory vegetation after restoration of natural characteristics in the boreal forests in Finland. For Ecol Manag 330:55–66

    Article  Google Scholar 

  • Hume AM, Chen HYH, Taylor AR (2018) Intensive forest harvesting increases susceptibility of northern forest soils to carbon, nitrogen and phosphorus loss. J Appl Ecol 55:246–255

    Article  CAS  Google Scholar 

  • Ilintsev A, Bogdanov A, Nakvasina E, Amosova I, Koptev S, Tretyakov S (2020) The natural recovery of disturbed soil, plant cover and trees after clear-cutting in the boreal forests, Russia. iForest 13:531–540

    Article  Google Scholar 

  • IUSS Working Group WRB (2007). World reference base for soil resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome, p 145.

  • James J, Harrison R (2016) The effect of harvest on forest soil carbon: a meta-analysis. Forests 7(12):308

    Article  Google Scholar 

  • Karazija S (2003) Age-related dynamics of pine forest communities in Lithuania. Baltic for 9:50–62

    Google Scholar 

  • Kelly D, Connolly A (2000) A review of the plant communities associated with Scots pine (Pinus sylvestris L.) in Europe, and an evaluation of putative indicator/specialist species. For Syst 9:15–39

    Google Scholar 

  • Kowalska A, Pawlewicz A, Dusza M, Jaskulak M, Grobelak A (2020) Plant–soil interactions in soil organic carbon sequestration as a restoration tool. Chapter 23. In: Prasad MNV, Pietrzykowski M (eds) Climate Change and Soil Interactions. Elsevier, pp 663–688. eBook ISBN: 9780128180334

  • Lafleur B, Fenton NJ, Simard M, Leduc A, Paré D, Valeria O, Bergeron Y (2018) Ecosystem management in paludified boreal forests: Enhancing wood production, biodiversity, and carbon sequestration at the landscape level. For Ecosyst. https://doi.org/10.1186/s40663-018-0145-z

    Article  Google Scholar 

  • Laudon H, Hedtjärn J, Schelker J, Bishop K, Sørensen R, Ågren A (2009) Response of dissolved organic carbon (DOC) following forest harvesting in a boreal forest. Ambio 33(7):381–386

    Article  Google Scholar 

  • Lee J, Yoon TK, Han S, Kim S, Yi MJ, Park GS, Kim C, Son YM, Kim R, Son Y (2014) Estimating the carbon dynamics of South Korean forests from 1954 to 2012. Biogeosciences 11:4637–4650

    Article  CAS  Google Scholar 

  • Löfgren S, Ring E, Von Brömssen C, Sørensen R, Högbom L (2009) Short-term effects of clear-cutting on the water chemistry of two boreal streams in northern Sweden: a paired catchment study. Ambio 33(7):347–356

    Article  Google Scholar 

  • Maciūnaitė (2017) Laukia didžiulės permainos: sprendžiama, ką daryti su plynaisiais kirtimais [A huge change awaits: deciding what to do with clear-cutting] Available online: https://www.delfi.lt/grynas/aplinka/laukia-didziules-permainos-sprendziama-ka-daryti-su-plynaisiais-kirtimais.d?id=73253586 (in Lithuanian).

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Marozas V, Sasnauskienė J (2021) Changes of ground vegetation after shelter wood cuttings in pine forests, the hemiboreal zone, Lithuania. Baltic For 27(1): article id 154. https://doi.org/10.46490/BF154.

  • Marozas V, Sasnauskienė J, Dautartė A, Gavenauskas A, Sabienė N, Armolaitis K (2018) Effect of shelterwood cuttings on soil chemical properties in scots pine (Pinus sylvestris L.) forests in Europe’s hemiboreal zone in Lithuania. J Elem 23(1):353–367

    Google Scholar 

  • ME (2016) National environmental protection strategy. Ministry of Environment of the Republic of Lithuania. JSC “ARX Reklama”, Kaunas, p 103. https://am.lrv.lt/uploads/am/documents/files/National%20Environmental%20Protection%20Strategy.pdf

  • ME (2020) Lietuvos Respublikos nacionalinis energetikos ir klimato srities veiksmų planas 2021–2030 m. [National Energy and Climate Action Plan of the Republic of Lithuania]. Ministry of Environment of the Republic of Lithuania. https://am.lrv.lt/uploads/am/documents/files/KLIMATO%20KAITA/Integruotas%20planas/Final%20NECP.pdf (in Lithuanian).

  • Meier AJ, Bratton SP, Duffy DC (1995) Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecol Appl 5:935–946

    Article  Google Scholar 

  • Moreno-Fernandez D, Diaz-Pines E, Barbeito I, Sanchez-Gonzalez M, Montes F, Rubio A, Canellas I (2015) Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean mountain Scots pine forests. For Ecol Manag 348:186–195

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston ChW, Curtis P (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866

    Article  Google Scholar 

  • Olsson BA, Staaf H, Lundkvist H, Bengtsson J, Kaj R (1996) Carbon and nitrogen in coniferous forest soils after clear-felling and harvests of different intensity. For Ecol Manag 82(1–3):19–32

    Article  Google Scholar 

  • Palviainen M, Finér L, Kurka AM, Mannerkoski H, Piirainen S, Starr M (2004) Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant Soil 263:53–67

    Article  CAS  Google Scholar 

  • Palviainen M, Finer L, Mannerkoski H, Piirainen S, Starr M (2005) Responses of ground vegetation species to clear-cutting in a boreal forest: aboveground biomass and nutrient contents during the first 7 years. Ecol Res 20:652–660

    Article  Google Scholar 

  • Palviainen M, Finér L, Laurén A, Launiainen S, Piirainen S, Mattsson T, Starr M (2014) Nitrogen, phosphorus, carbon, and suspended solids loads from forest clear-cutting and site preparation: long-term paired catchment studies from eastern Finland. Ambio 43:218–233

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Piirainen S, Finér L, Mannerkoski H, Starr M (2009) Leaching of cations and sulphate after mechanical site preparation at a boreal forest clear-cut area. Geoderma 149:386–392

    Article  CAS  Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077

    Article  Google Scholar 

  • Puettmann KJ, Wilson SM, Baker SC, Donoso PJ, Drössler L, Amente G, Harvey BD, Knoke T, Lu Y, Nocentini S, Putz FE, Yoshida T, Bauhus J (2015) Silvicultural alternatives to conventional even-aged forest management—What limits global adoption? For Ecosyst 2:8

    Article  Google Scholar 

  • Qian H, Klinka K, Sivak B (1997) Diversity of the understory vascular vegetation in 40 year-old and old-growth forest stands on Vancouver Island, British Columbia. J Veg Sci 8:773–780

    Article  Google Scholar 

  • Riegel GM, Miller RF, Krueger WC (1995) The effects of aboveground and belowground competition on understory species composition in a Pinus ponderosa forest. For Sci 41:864–889

    Google Scholar 

  • Schelker J, Eklöf K, Bishop K, Laudon H (2012) Effects of forestry operations on dissolved organic carbon concentration an export in boreal first-order streams. J Geophys Res 117:1–12. https://doi.org/10.1029/2011JG001827

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change, 2nd edn. Academic Press, San Diego, p 588

    Google Scholar 

  • Schulze ED, Freibauer A (2005) Environmental science: Carbon unlocked from soils. Nature 437:205–206

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED, Högberg P, Van Oene H, Persson T, Harrison AF, Read D, Kjøller A, Matteucci G (2000) Interactions between the carbon and nitrogen cycles and the role of biodiversity: a synopsis of a study along a North-South transect through Europe. In: Schulze ED (ed) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological studies (analysis and synthesis), vol 142. Springer, Berlin. https://doi.org/10.1007/978-3-642-57219-7_21

    Chapter  Google Scholar 

  • Stefańska-Krzaczek E, Staniaszek-Kik M, Szczepańska K, Szymura TH (2019) Species diversity patterns in managed Scots pine stands in ancient forest sites. PLoS ONE 14(7):e0219620. https://doi.org/10.1371/journal.pone.0219620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiffault E, Hannam KD, Pare D, Titus BD, Hazlett PW, Maynard DG, Brais S (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ Rev 19:278–309

    Article  Google Scholar 

  • Titus BD, Roberts BA, Deering KW (1998) Nutrient removals with harvesting and by deep percolation from white birch (Betula papyrifera [Marsh.]) sites in central Newfoundland. Can J Soil Sci 78(1):127–137

    Article  CAS  Google Scholar 

  • Tyle G (1989) Interacting effects of soil acidity and canopy cover on the species composition of field-layer vegetation in oak/hornbeam forests. For Ecol Manag 28:101–114

    Article  Google Scholar 

  • Vaičys M, Karazija S, Kuliešis A, Rutkauskas A (2006) Miškų augavietės. Miško augaviečių tipai [Forest sites. Forest site types]. Kaunas, Lithuania: Lututė (in Lithuanian).

  • Vanguelova E, Pitman R, Luiro J, Helmisaari HS (2010) Long term effects of whole tree harvesting on soil carbon and nutrient sustainability in the UK. Biogeochemistry 101:43–59

    Article  CAS  Google Scholar 

  • Zetterberg T, Olsson BA (2011) Long-term effects of clearcutting and biomass removal on soil water chemistry at three coniferous sites in Sweden. Report B1959, IVL. Swedish Environmental Research Institute Ltd, Göteborg, Sweden

Download references

Acknowledgements

This paper is based on Dovilė Gustienė Ph.D. project “Peculiarities of reforestation in clear cuttings of Scots pine stands on nutrient poor sites” (2017–2023), and partly presents research findings obtained through the Long-term Research Program “Sustainable Forestry and Global Changes” implemented by the Lithuanian Research Centre for Agriculture and Forestry. This work was conducted within the framework of the CAR-ES network for 2016–2020, funded by Nordic Forest Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iveta Varnagirytė-Kabašinskienė.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding

The project was funded by Ph.D. project “Peculiarities of reforestation in clear cuttings of Scots pine stands on nutrient poor sites” (2017–2023), implemented by the Lithuanian Research Centre for Agriculture and Forestry.

The online version is available at http://www.springerlink.com.

Corresponding editor: Zhu Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustienė, D., Varnagirytė-Kabašinskienė, I. & Stakėnas, V. Ground vegetation, forest floor and mineral topsoil in a clear-cutting and reforested Scots pine stands of different ages: a case study. J. For. Res. 33, 1247–1257 (2022). https://doi.org/10.1007/s11676-021-01434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-021-01434-5

Keywords

Navigation