Skip to main content
Log in

Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Ginkgo biloba is a famous living “fossil” and has played an important role in the evolution of the Plant Kingdom. Here, the complete chloroplast genome of G. biloba was sequenced and analysed. The chloroplast genome was 156,990 bp long and predicted to encode 134 genes including 85 protein-coding genes, 41 tRNA genes and 8 rRNA genes. The chloroplast genome has a typical quadripartite structure with a pair of inverted repeat regions (IRa and IRb, 17,732 bp), a large (LSC, 99,259 bp) and small single (SSC, 22,267 bp) copy region. After an extensive comparison to previously published gymnosperm plastomes, the gene content and organisation of G. biloba showed high divergence, although part was relatively conserved. The two typical IR regions in the G. biloba chloroplast genome were relatively shorter because it the ycf2 gene. In addition, it was obvious that the IR regions and gene loss were responsible for changes in chloroplast genome size and structure stability, which influenced plastome evolution in different gymnosperms. Phylogenetic analysis revealed that G. biloba is sister to cycads rather than to gnetophytes, cupressophytes, and Pinaceae. Overall, the study showed that the genomic characteristics of G. biloba would be of great help in the further research on the taxonomy, species identification and evolutionary history of gymnosperms, especially for their position in plant systematics and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asaf S, Khan AL, Khan MA, Shahzad R, Lubna Kang SM, Al-Harrasi A, Al-Rawahi A, Lee IJ (2018) Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS ONE 13(3):e0192966

    PubMed  PubMed Central  Google Scholar 

  • Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4):578–579

    CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16(20):6095–6104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaw SM, Wu CS, Sudianto E (2018) Evolution of gymnosperm plastid genomes. In: Advances in botanical research. Elsevier, New York, pp 195–222

    Google Scholar 

  • Chen JH, Hao ZD, Xu HB, Yang LM, Liu GX, Sheng Y, Zheng C, Zheng WW, Cheng TL, Shi JS (2015) The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci 6:447

    PubMed  PubMed Central  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17(1):134

    PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models new heuristics and parallel computing. Nat Methods 9(8):772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong W, Zeng Z, Chen YY, Chen C, Qiu YX, Fu CX (2008) Glacial refugia of Ginkgo biloba and human impact on its genetic diversity: evidence from chloroplast DNA. J Integr Plant Biol 50(3):368–374

    PubMed  Google Scholar 

  • Grant JR, Paul S (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:181–184

    Google Scholar 

  • Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34

    CAS  PubMed  Google Scholar 

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28(1):583–600

    CAS  PubMed  Google Scholar 

  • Guo S, Guo L, Zhao W, Xu J, Li YY, Zhang XY, Shen XF, Wu ML, Hou XG (2018) Complete chloroplast genome sequence and phylogenetic analysis of Paeonia ostii. Molecules 23:246

    PubMed Central  Google Scholar 

  • Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2008) Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8:70

    PubMed  PubMed Central  Google Scholar 

  • Hou Z, Wang ZS, Zhang JG (2019) The complete chloroplast genomic landscape and phylogenetic analysis of Populus alba L. J For Res. https://doi.org/10.1007/s11676-019-00953-6

    Article  Google Scholar 

  • Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358(1429):99–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL (2017) ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res 27(5):768–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer, Dordrecht, p 377

    Google Scholar 

  • Jiang GF, Hinsinger DD, Strijk JS (2016) Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads. Sci Rep 6:31473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29(22):4633–4642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):12

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, De La Torre AR, Sterck L, Canovas FM, Avila C, Merino I, Cabezas J, Cervera M, Ingvarsson PK, Van de Peer Y (2017) Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol 9(5):1130–1147

    CAS  Google Scholar 

  • Li X, Li YF, Zang MY, Li MZ, Fang YM (2018) Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. Int J Mol Sci 19:2443

    PubMed Central  Google Scholar 

  • Lin CP, Wu CS, Huang YY, Chaw SM (2012) The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol 4(3):374–381

    PubMed  PubMed Central  Google Scholar 

  • Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, He GZ, Chen YX, Pan Q, Liu YJ, Tang JB, Wu GX, Zhang H, Shi YJ, Liu Y, Yu C, Wang B, Lu Y, Han CL, Cheung DW, Yiu SM, Peng SL, Zhu XQ, Liu GM, Liao XK, Li YR, Yang HM, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

    PubMed  PubMed Central  Google Scholar 

  • Mao JP, Zhou F, Liu TY, Wu ZY, Zhong T, Liu CX, Wei Q, Chen JH, Huang SW (2017) The complete chloroplast genome of Gnetum montanum and sequence analysis. Mitochondrial DNA A 28(3):409–410

    CAS  Google Scholar 

  • Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. Int J Mol Sci 186:299–317

    CAS  Google Scholar 

  • Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16(11):1046–1047

    CAS  PubMed  Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104(49):19363–19368

    PubMed  PubMed Central  Google Scholar 

  • Nie XJ, Lv SZ, Zhang YX, Du XH, Wang L, Biradar SS, Tan XF, Wan FH, Song WN (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE 7(5):e36869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    CAS  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271(1–2):101–122

    CAS  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33(2):686–689

    Google Scholar 

  • Shaul O (2017) How introns enhance gene expression. Int J Biochem Cell Biol 91:145–155

    CAS  PubMed  Google Scholar 

  • Shen L, Chen XY, Zhang X, Li YY, Fu CX, Qiu YX (2005) Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia. Heredity 94:396–401

    CAS  PubMed  Google Scholar 

  • Shi LC, Chen HM, Jiang M, Wang LQ, Wu X, Huang LF, Liu C (2019) CPGAVAS2 an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47(1):65–73

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun CR, Li J, Dai XG, Chen YN (2018) Analysis and characterization of the Salix suchowensis chloroplast genome. J For Res 29(4):1003–1011

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP: phylogenetic analysis using parsimony version 40 b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Bock R, Greiner S (2017) GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45(1):6–11

    Google Scholar 

  • Wang XL, Cheng F, Rohlsen D, Bi CW, Wang CY, Xu YQ, Wei SY, Ye QL, Yin TM, Ye N (2018) Organellar genome assembly methods and comparative analysis of horticultural plants. Hortic Res 5(1):3

    PubMed  PubMed Central  Google Scholar 

  • Wheeler GL, Dorman HE, Buchanan A, Challagundla L, Wallace LE (2014) A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. Appl Plant Sci 2(12):1400059

    Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GK-S, Leebens-Mack J (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111(45):4859–4868

    Google Scholar 

  • Wu CS, Chaw SM (2014) Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers. Plant Biotechnol J 12(3):344–353

    CAS  PubMed  Google Scholar 

  • Wu CS, Wang YN, Liu SM, Chaw SM (2007) Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol 24(6):1366–1379

    CAS  PubMed  Google Scholar 

  • Wu CS, Lai YT, Lin CP, Wang YN, Chaw SM (2009) Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol 52(1):115–124

    CAS  PubMed  Google Scholar 

  • Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM (2011) Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and Cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol 3:1284–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CS, Chaw SM, Huang YY (2013) Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads. Genome Biol Evol 5(1):243–254

    PubMed  PubMed Central  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255

    CAS  PubMed  Google Scholar 

  • Yagi Y, Shiina T (2014) Recent advances in the study of chloroplast gene expression and its evolution. Front Plant Sci 5:61

    PubMed  PubMed Central  Google Scholar 

  • Yang XM, Li H, Liang M, Xu Q, Chai LJ, Deng XX (2015) Genetic diversity and phylogenetic relationships of citron (Citrus medica L) and its relatives in southwest China. Tree Genet Genomes 11(6):129

    Google Scholar 

  • Zhang YZ, Ma J, Yang BX, Li RY, Wei Z, Sun LL, Tian JK, Zhang L (2014) The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species. Gene 540(2):201–209

    CAS  PubMed  Google Scholar 

  • Zheng XM, Wang JR, Li F, Sha L, Pang HB, Lan Q, Jing L, Yan S, Qiao W, Zhang LJSR (2017) Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci Rep 7:1555

    Google Scholar 

  • Zhu AD, Guo WH, Gupta S, Fan WS, Mower JP (2016) Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol 209:1747–1756

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank laboratory members for assistance with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuliang Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the Key Forestry Public Welfare Project of China (201504105), the National Key Research and Development Program of China (2017YFD0600700), and the Agricultural Science and Technology Independent Innovation Funds of Jiangsu Province [CX(16)1005].

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhou, T., Su, X. et al. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. J. For. Res. 32, 765–778 (2021). https://doi.org/10.1007/s11676-019-01088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-01088-4

Keywords

Navigation