Skip to main content
Log in

Evaluating the efficiency of the Dong model in determining fire vulnerability in Iran’s Zagros forests

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Recent fires in Iran’s Zagros forests have inflicted heavy, extensive losses to the environment, forests, villages, and forest inhabitants, resulting in a huge financial loss to the country. With the increasing risk of fire and the resulting losses, it has become ever more necessary to design and develop efficient fire control and prediction procedures. The present study utilizes the Dong model to develop a map of areas vulnerable to fire in the Zarivar lake forests as a representative sample of Zagros forests. The model uses as its inputs some of the most significant factors (such as vegetation, physiographic features, and the human component) that affect the fire occurrence and spread. Having assigned weights to each factor based on the model, all maps were overlapped in the ArcMap and then the region was divided into five zones. The results showed that 74% of the region was located in three classes: highly vulnerable, vulnerable, and medially vulnerable. To validate the proposed zoning map it was compared with a map based on real data obtained from previous fires. The results showed that 81% of fire incidents were located in highly vulnerable, vulnerable and medially vulnerable zones. Furthermore, the findings indicated a medium to a high degree of fire vulnerability in Zarivar Lake forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdi O, Kamkar B, Shirvani Z, Teixeir JA, Buchroithner MF (2016) Spatial-statistical analysis of factors determining forest fires: a case study from Golestan, Northeast Iran. Geomat Nat Hazards Risk 9(1):267–280

    Article  Google Scholar 

  • Adab H, Kanniah K, Solaimani K (2011) GIS-based probability assessment of fire risk in Grassland and forested landscapes of Golestan province, Iran. IPCBEE 19

  • Ager AA, Preisler HK, Arca B, Spano D, Salis M (2014) Wildfire risk estimation in the Mediterranean area. Environmetrics 25(6):384–396

    Article  Google Scholar 

  • Albini FA (1976) Estimating wildfire behavior and effects. USDA forest service, intermountain forest and range experiment station, general technical report INT-30, p 92

  • Ariapour A, Shariff ARM (2014) Rangeland fire risk zonation using remote sensing and geographical information system technologies in Boroujerd rangelands, Lorestan Province, Iran. Ecopersia 2(4):805–818

    Google Scholar 

  • Bachmann A, Allgower B (2001) A consistent wild land fire risk terminology is needed. Fire Manag Today 61(4):28–33

    Google Scholar 

  • Cáceres CF (2011) Using GIS in hotspots analysis and for forest fire fisk zones mapping in the Yeguare region, southeastern Honduras. Volume 13, Papers in resource analysis. Saint Mary’s University of Minnesota University Central Services Press, Winona, 14 pp

    Google Scholar 

  • Castro R, Chuvieco E (1998) Modeling forest fire danger from geographic information systems. Geocarto Int 13(1):15–23

    Article  Google Scholar 

  • Chavan ME, Das KK, Suryawanshi RS (2012) Forest fire risk zonation using remote sensing and GIS in Huynial watershed, Tehri Garhwal district, UA. Int J Basic Appl Res 2(1):6–12

    Google Scholar 

  • Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29(2):147–159

    Article  Google Scholar 

  • Chuvieco E, Salas J (1996) Mapping the spatial distribution of forest fire danger using GIS. Int J Geogr Inf Syst 10(3):333–345

    Article  Google Scholar 

  • Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martin MP, Vilar L, Martinez J, Martin S, Ibarra P, De la J (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221(1):46–58

    Article  Google Scholar 

  • Denham M, Wendt K, Bianchini G, Cortes A, Margalef T (2012) Dynamic data-driven genetic algorithm for forest fire spread prediction. J Comput Sci 3(5):398–404

    Article  Google Scholar 

  • Dong X, Li-min D, Guo-fan SH, Lei T, Hui W (2005) Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. J For Res 16(3):169–174

    Article  Google Scholar 

  • Eskandari S (2015) Evaluation of forest fire risk potential using Dong model, case study: district three of Neka-Zalemroud forests. Geogr Plan Space Q J 5(15):195–210

    Google Scholar 

  • FAO (2001) Global forest fire assessment 1990–2000, FRA 2000, Rome, p 565

  • Flannigan M, Harrington JB (1988) A study of the relation of meteorological variables to monthly provincial area burned by wild fire in Canada (1953–80). J Appl Meteorol 27(4):441–452

    Article  Google Scholar 

  • Gerdzheva AA (2014) A comparative analysis of different wildfire risk assessment models (a case study for Smolyan district, Bulgaria). Eur J Geogr 5(3):22–36

    Google Scholar 

  • Giglio L, Wer GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observation. J Atmos Chem Phys 6(4):957–974

    Article  CAS  Google Scholar 

  • Jaiswal RK, Mukherjee S, Raju DK, Saxena R (2002) Forest fire risk zone mapping from satellite imagery and GIS. Int J Appl Earth Obs Geoinf 4(1):1–10

    Article  Google Scholar 

  • Kazemi M (2005) Fire and forest ecosystems. J Livest Cultiv Ind 7(7):46–48

    Google Scholar 

  • Lee BS, Alexander ME, Hawkes BC, Lynham TJ, Stocks BJ, Englefield P (2002) Information systems in support of wildland fire management decision making in Canada. Comput Electron Agric 37(1–3):185–198

    Article  Google Scholar 

  • Mansoori N, Nazari R, Nasiri P, Qaragoozlu A (2011) Forest fire disaster management plan with RS & GI technology. Iran J Appl Remote Sens GIS Plan 2(3):63–73

    Google Scholar 

  • Miller C, Ager AA (2013) A review of recent advances in risk analysis for wildfire management. Int J Wildland Fire 22:1–14

    Article  Google Scholar 

  • Mohammadi F, Shabanian N, Pourhashemi M, Fatehi P (2010) Risk zone mapping of forest fire using GIS and AHP in a part of Paveh forests. Iran J For Poplar Res 18(4):569–586

    Google Scholar 

  • Ozelkan E, Ormeci C (2009) Risk assessment of forest fires by using satellite data with remote sensing techniques. In: Remote sensing for a changing Europe. IOS Press, pp 53–60

  • Pandey HN, Barik SK (2006) Ecology, diversity and conservation of plants and ecosystems in India. Regency Publications, New Delhi, p 436

    Google Scholar 

  • Payandeh Najafabadi AT, Gorgani F, Omidi Najafabadi M (2015) Modeling forest fires in Mazandaran Province, Iran. J For Res 26(4):851–858

    Article  Google Scholar 

  • Rashidi A, Makhdoom M, Feqhi J, Sharifi M (2010) Evaluation of ecotourism in forests around the Zaribar lake using GIS. Environ Res 1(2):19–30

    Google Scholar 

  • Sowmya SV, Somashekar RK (2010) Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India. J Environ Biol 31(6):969–974

    CAS  PubMed  Google Scholar 

  • Vadrevu KP, Eaturu A, Badarinath KVS (2009) Fire risk evaluation using multicriteria analysis-a case study. Environ Monit Assess 166(1–4):223–239

    PubMed  Google Scholar 

  • Viegas D (2004) Slope and wind effect on fire propagation. Int J Wild Land Fire 13(2):143–156

    Article  Google Scholar 

  • Xu D, Dai LM, Shao GF, Tang L, Wang H (2005) Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. J For Res 16(3):169–174

    Article  Google Scholar 

  • Zhang ZX, Zhang H, Zhou DW (2010) Using GIS spatial analysis and logistic regression to predict the probabilities of human-caused grassland fires. J Arid Environ 74(3):386–393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabri Baqer Rasooli.

Additional information

The online version is available at http://www.springerlink.com

Corresponding editor: Hu Yanbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baqer Rasooli, S., Bonyad, A.E. Evaluating the efficiency of the Dong model in determining fire vulnerability in Iran’s Zagros forests. J. For. Res. 30, 1447–1458 (2019). https://doi.org/10.1007/s11676-018-0765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0765-8

Keywords

Navigation