Skip to main content
Log in

Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The aim of this study is to determine the influence of tree litters on soil nutrients in a managed forest in southwestern Nigeria. Mono species tree clusters consisted of indigenous species: Gmelina arborea, Tectona grandis, Leucaena leucocephala, Bambusa vulgaris, Treculia africana, Anogeissus leiocarpus were selected and analyzed for their litter and soil chemical properties at 0–5 and 15–30 cm. T. africana and T. grandis litters have the highest nutrients, while L. leucocephala and A. leiocarpus are the lowest. Soils under G. arborea, T. africana, and A. leiocarpus are more acidic due to lower calcium and magnesium contents but have higher manganese and sulphur levels. Tree litters improved soil nitrogen, phosphorous, and micro-nutrients but depleted potassium. Litter lignin and carbon appeared to hinder the release of some nutrients. Nitrogen, potassium and copper are concentrated in the topsoil while others nutrients are not differentiated with soil depth. There is a positive correlation between litter chemistry and soil chemical properties. It was concluded that tree litter chemistry differs according to species but determines soil reaction and nutrient content. The magnitude of the effect on soil properties is related to the quality of the organic litters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison LE, Moodie CD (1965) Carbonate. In: Black CA et al. (ed.) Method of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA, CSSA and SSSA, Madison USA, pp 1379–1400

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22

    Article  Google Scholar 

  • Berger TW, Berger P (2014) Does mixing of beech (Fagus sylvatica) and spruce (Picea abies) litter hasten decomposition? Plant Soil 377:217–234

    Article  CAS  PubMed  Google Scholar 

  • Berger TW, Inselsbacher E, Mutsch F, Pfeffer M (2009a) Nutrient cycling and soil leaching in eighteen pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies). For Ecol Manag 258:2578–2592

    Article  Google Scholar 

  • Berger TW, Untersteiner H, Toplitzer M, Neubauer C (2009b) Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica). Plant Soil 322:317–342

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Total N. In: Black CA (ed) Methods of soil analysis. Part II. American Society of Agronomy, Monograph No. 19, Madison, pp 1149–1176

    Google Scholar 

  • Budelman A (1989) Nutrient composition of the leaf biomass of three selected woody leguminous species. Agrofor Syst 8:39–51

    Article  Google Scholar 

  • Constantinides M, Fownes JH (1994) Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol Biochem 26:49–55

    Article  CAS  Google Scholar 

  • Dijkstra FA (2003) Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US. For Ecol Manag 175:185–194

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Guckland A, Jacob M, Flessa H, Thomas FM, Leuschner C (2009) Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutr Soil Sci 172:500–511

    Article  CAS  Google Scholar 

  • Hansen K, Vesterdal L, Schmidt IK (2009) Litterfall and nutrient return in five tree species in a common garden experiment. For Ecol Manag 257:2133–2144

    Article  Google Scholar 

  • Inagaki Y, Miura S, Kohzu A (2004) Effects of forest type and stand age on litterfall quality and soil N dynamics in Shikohu district, southern Japan. For Ecol Manag 202:107–117

    Article  Google Scholar 

  • Jacob M, Viedenz K, Polle A, Thomas FM (2010) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164:1083–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Langenbruch C, Helfrich M, Flessa H (2012) Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 352:389–403

    Article  CAS  Google Scholar 

  • Lawson SS, Michler CH (2014) Afforestation, restoration and regeneration—not all trees are created equal. J For Res 25(1):3–20

    Article  Google Scholar 

  • Mareschal L, Bonnaud P, Turpault MP, Ranger J (2010) Impact of common European tree species on the chemical and physicochemical properties of fine earth: an unusual pattern. Eur J Soil Sci 61:14–23

    Article  CAS  Google Scholar 

  • McLean EO, Dumford SWF, Coronel SW (1982) A comparison of several methods of determining lime requirements of soil. Soil Sci Soc Am Proc 30:26–30

    Article  Google Scholar 

  • Noble A, Randall P (1999) Alkalinity effects of different tree litters incubated in an acid soil of NSW, Australia. Agrofor Syst 46:147–160

    Article  Google Scholar 

  • Palm CA (1995) Contribution of agroforestry trees to nutrient requirements of intercropped plants. Agrofor Syst 30:105–124

    Article  Google Scholar 

  • Palm CA, McKerrow AJ, Glasener KM, Szott LT (1991) Agroforestry systems in lowland tropics: Is phosphorus important? In: Tiessen H, Lopez-Hernandez D, Salcedo IH (eds) Phosphorus cycles in terrestrial and aquatic ecosystems. Regional Workshop 3: South and Central America. Saskatchewan Institute of Pedology, Saskatoon, pp 134–141

    Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818

    Article  Google Scholar 

  • Salako FK, Hauser S, Babalola O, Tian G (2001) Improvement of the physical fertility of a degraded Alfisol with planted and natural fallows under humid tropical conditions. Soil Use Manag 17:41–47

    Article  Google Scholar 

  • Schachtschabel P (1957) Die Bestimmung des Manganversor-gungsgrades von Böden und seine Beziehung zum Auftreten der Dörrfleckenkrankheit bei Hafer. Z Pflanz, Düngung, Bodenkunde 78:147–167

    Article  CAS  Google Scholar 

  • Tella IO, Ademola-Aremu OO, Balogun RO (2005) Litter and return of macronutrients in even-aged stands of three woody species in a semi-aid environment. Niger J Trop Agric 7:73–80

    Google Scholar 

  • Tian G, Kang BT, Brussaard L (1992) Effects of chemical composition on N, Ca, and Mg release during incubation of leaves from selected agroforestry and fallow plant species. Biogeochem 16:103–119

    Article  CAS  Google Scholar 

  • Van Noordwijk M, Sitompul SM, Hairiah K, Listyarini E, Syekhfani MS. (1995) Nitrogen supply from rotational or spatially zoned inclusion of Leguminosae for sustainable maize production on an acid soil in Indonesia. In: asb@cgiar.org, Plant soil interaction at low pH. Kluwer Academic Publisher, Wageningen, pp 779–784

  • Vesterdal L, Schmidt I, Callesen I, Nilsson L, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255:35–48

    Article  Google Scholar 

  • Walkey A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chronic acid titration method. Soil Sci 37:29–37

    Article  Google Scholar 

  • Young A (1989) Agroforestry for soil conservation. International Council for Research and Agroforestry and CAB International, Wallingford, p 97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Azeez.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Project funding: The research was not funded.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeez, J.O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria. J. For. Res. 30, 1903–1911 (2019). https://doi.org/10.1007/s11676-018-0753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0753-z

Keywords

Navigation