Skip to main content
Log in

Ecosystem carbon and nitrogen storage following farmland afforestation with black locust (Robinia pseudoacacia) on the Loess Plateau, China

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Although afforestation of farmlands has been proposed as an effective method of carbon (C) sequestration, there remain uncertainties that deter us from developing a clear picture of C stocks in plantation ecosystems. This study investigated the dynamics of stand structure and plant diversity, and C and nitrogen (N) pools in trees, herbs, litter, and soil (0–100 cm depth) in black locust plantations aged 9, 17, 30, and 37 years, and in newly abandoned farmlands as pre-afforestation sites, on the Loess Plateau, China. Stand density decreased significantly, while tree diameter at breast height and height increased during stand development. The dominant species of the herb layer differed with age. Afforestation resulted in slight increases in tree C and N storage in plantations from 9 to 30 years of age, and then significantly increased from 30 to 37 years. Compared to pre-afforestation, C and N storage in soil decreased to minimum values in stands aged 17 and 9 years, respectively. The soil re-accumulated C and N during stand development, attaining equilibrium levels similar to those in pre-afforestation when stands reached about 30 years of age. Soil C and N storage in 37-year stands were 29 and 16% higher, respectively, than in pre-afforestation levels. However, C and N concentrations in the subsoil (20–40 cm) were still less than the pre-afforestation levels for stands of all ages (from 9 to 37 years). The relative contribution to the total ecosystem C and N pools increased in trees and decreased in soil during the observed period. Our results indicate that afforestation reduced soil C and N storage during the early stages of stand development. We conclude that the growing phase of an afforested stand over its initial 30 years is important for C and N sequestration by black locust due to the C and N storage that result from recovered soil quality and an increase in tree biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arevalo CBM, Bhatti JS, Chang SX, Sidders D (2009) Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. For Ecol Manag 257:1776–1785

    Article  Google Scholar 

  • Aryal DR, De Jong BHJ, Ochoa-Gaona S, Esparza-Olguin L, Mendoza-Vega J (2014) Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric Ecosyst Environ 195:220–230

    Article  Google Scholar 

  • Berthrong ST, Jobbagy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241

    Article  PubMed  Google Scholar 

  • Bradford JB, Kastendick DN (2010) Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA. Can J For 40:401–409

    CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Chang RY, Fu BJ, Liu GH, Liu SG (2011) Soil carbon sequestration potential for “Grain for Green” project in Loess Plateau, China. Environ Manag 48:1158–1172

    Article  Google Scholar 

  • Chen Y, Cao Y (2014) Response of tree regeneration and understory plant species diversity to stand density in mature Pinus tabulaeformis plantations in the hilly area of the Loess Plateau, China. Ecol Eng 73:238–245

    Article  Google Scholar 

  • Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS (2013) Carbon storage in a chronosequence of Chinese fir plantations in southern China. For Ecol Manag 300:68–76

    Article  Google Scholar 

  • Cheng XQ, Han HR, Kang FF, Song YL, Liu K (2014) Variation in biomass and carbon storage by stand age in pine (Pinus tabulaeformis) planted ecosystem in Mt. Taiyue, Shanxi, China. J Plant Interact 9:521–528

    Article  CAS  Google Scholar 

  • Cote L, Brown S, Pare D, Fyles J, Bauhus J (2000) Dynamics of carbon acid nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biol Biochem 32:1079–1090

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Shangguan ZP, Sweeney S (2013) Changes in soil carbon and nitrogen following land abandonment of farmland on the Loess Plateau, China. PLoS ONE 8:e71923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Liu GB, Shangguan ZP (2014a) Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Glob Change Biol 20:3544–3556

    Article  Google Scholar 

  • Deng L, Shangguan ZP, Sweeney S (2014b) “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China. Sci Rep 4:7039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Wang KB, Li JP, Shangguan ZP, Sweeney S (2014c) Carbon Storage Dynamics in Alfalfa (Medicago sativa) Fields in the Hilly-Gully Region of the Loess Plateau, China. Clean Soil Air Water 42:1253–1262

    Article  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Drake JE, Davis SC, Raetz LM, DeLucia EH (2011) Mechanisms of age-related changes in forest production: the influence of physiological and successional changes. Glob Change Biol 17:1522–1535

    Article  Google Scholar 

  • Fang JY, Chen AP, Peng CH, Zhao SQ, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  PubMed  Google Scholar 

  • FAO–UNESCO (1974) Soil map of the world (1:5,000,000). Food and Agricultural Organisation of the United Nations, UNECO, Paris

    Google Scholar 

  • Feng X, Fu B, Lu N, Zeng Y, Wu B (2013) How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China’s Loess Plateau. Sci Rep 3:2846

    Article  PubMed  PubMed Central  Google Scholar 

  • Forrester DI, Pares A, O’Hara C, Khanna PK, Bauhus J (2013) Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing. Acacia Ecosyst 16:123–132

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Article  Google Scholar 

  • Hu Y, Zeng D, Jiang T (2009) Effects of afforested poplar plantations on the stock and distribution of C, N, P at Keerqin Sandy Lands. Acta Ecol Sin 29:4206–4214

    CAS  Google Scholar 

  • Jackson RB, Schlesinger WH (2004) Curbing the U.S. carbon deficit. Proc Natl Acad Sci USA 101:15827–15829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao JY, Zhang ZG, Bai WJ, Jia YF, Wang N (2012) Assessing the ecological success of restoration by afforestation on the Chinese Loess Plateau. Restor Ecol 20:240–249

    Article  Google Scholar 

  • Jobbágy E, Jackson R (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Józefowska A, Pietrzykowski M, Woś B, Cajthaml T, Frouz J (2017) The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 292:9–16

    Article  Google Scholar 

  • Khanna PK (1997) Comparison of growth and nutrition of young monocultures and mixed stands of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 94:105–113

    Article  Google Scholar 

  • Laganiere J, Angers DA, Pare D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lee YC, Nam JM, Kim JG (2011) The influence of black locust (Robinia pseudoacacia) flower and leaf fall on soil phosphate. Plant Soil 341:269–277

    Article  CAS  Google Scholar 

  • Li T, Liu G (2014) Age-related changes in carbon accumulation and allocation in plants and soil of a black locust forest on the Loess Plateau. Chin Geogr Sci 24:414–422

    Article  CAS  Google Scholar 

  • Li X, Yi MJ, Son Y, Park PS, Lee KH, Son YM, Kim RH, Jeong MJ (2011) Biomass and carbon storage in an age-sequence of Korean Pine (Pinus koraiensis) plantation forests in Central Korea. J Plant Biol 54:33–42

    Article  CAS  Google Scholar 

  • Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li J, He YL, Li SJ, Liang ZS, Peng CH, Polle A, Luo Zh (2013a) Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations. Acta Physiol Plant 35:2951–2964

    Article  CAS  Google Scholar 

  • Li YQ, Brandle J, Awada T, Chen YP, Han JJ, Zhang FX, Luo YQ (2013b) Accumulation of carbon and nitrogen in the plant-soil system after afforestation of active sand dunes in China’s Horqin Sandy Land. Agric Ecosyst Environ 177:75–84

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Li B (2010) Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation. PLoS ONE 5:e10867

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZP, Shao MA, Wang YQ (2011) Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric Ecosyst Environ 142:184–194

    Article  Google Scholar 

  • Liu ZP, Shao MA, Wang YQ (2014) The contribution of China’s Grain to Green Program to carbon sequestration. Landsc Ecol 29:1675–1688

  • Lu N, Liski J, Chang RY, Akujarvi A, Wu X, Jin TT, Wang YF, Fu BJ (2013) Soil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China. Biogeosciences 10:7053–7063

    Article  CAS  Google Scholar 

  • Luo Y, Bo S, William SC, Jeffery SD (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Mao R, Zeng DH, Hu YL, Li LJ, Yang D (2010) Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 332:277–287

    Article  CAS  Google Scholar 

  • Mazurek R, Bejger R (2014) The role of black locust (Robinia pseudoacacia L.) shelterbelts in the stabilization of carbon pools and humic substances in chernozem. Pol J Environ Stud 23:1263–1271

    CAS  Google Scholar 

  • Mei L, Zhang Z, Gu J, Quan X, Yang L, Huang D (2009) Carbon and nitrogen storages and allocation in tree layers of Fraxinus mandshurica and Larix gmelinii plantations. Chin J Appl Ecol 20:1791–1796

    CAS  Google Scholar 

  • Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (2007) Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    Article  CAS  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257

    Article  Google Scholar 

  • Peichl M, Arain MA (2007) Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manag 253:68–80

    Article  Google Scholar 

  • Persson M, Moberg J, Ostwald M, Xu JT (2013) The Chinese Grain for Green Programme: assessing the carbon sequestered via land reform. J Environ Manag 126:142–146

    Article  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Pietrzykowski M, Daniels WL (2014) Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates. Ecol Eng 73:209–218

    Article  Google Scholar 

  • Pietrzykowski M, Krzaklewski W (2007) Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Arch Agron Soil Sci 53:473–483

    Article  CAS  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327

    Article  Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–2077

    Article  Google Scholar 

  • Qiu LP, Zhang XC, Cheng JM, Yin XQ (2010) Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Platea, Chinau. Plant Soil 332:207–217

    Article  CAS  Google Scholar 

  • Rastetter EB, Agren GI, Shaver GR (1997) Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecol Appl 7:444–460

    Google Scholar 

  • Ritter E (2007) Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland. Plant Soil 295:239–251

    Article  CAS  Google Scholar 

  • Sang PM, Lamb D, Bonner M, Schimdt S (2013) Carbon sequestration and soil fertility of tropical tree plantations and secondary forest established on degraded land. Plant Soil 362:187–200

    Article  CAS  Google Scholar 

  • Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122:325–339

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shen JP, Zhang WH (2014) Characteristics of carbon storage and sequestration of Robinia pseudoacacia forest land converted by farmland in the Hilly Loess Plateau Region. Acta Ecol Sin 34:2746–2754

    Google Scholar 

  • Shi H, Shao MA (2000) Soil and water loss from the Loess Plateau in China. J Arid Environ 45:9–20

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Song X, Peng C, Zhou G, Jiang H, Wang W (2014) Chinese Grain for Green Program led to highly increased soil organic carbon levels: a meta-analysis. Sci Rep 4:4460

    Article  PubMed  PubMed Central  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  • Wang H, Huang Y, Feng Z, Wang S (2007) C and N stocks under three plantation forest ecosystems of Chinese fir, Michelia macclurei and their mixture. Front For Chin 2:251–259

    Article  Google Scholar 

  • Wang B, Liu GB, Xue S (2012) Effect of black locust (Robinia pseudoacacia) on soil chemical and microbiological properties in the eroded hilly area of China’s Loess Plateau. Environ Earth Sci 65:597–607

    Article  CAS  Google Scholar 

  • Yang YH, Luo YQ, Finzi AC (2011) Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol 190:977–989

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang GX, Shen HH, Yang Y, Cui HJ, Liu Q (2014) Dynamics of carbon and nitrogen accumulation and C:N stoichiometry in a deciduous broadleaf forest of deglaciated terrain in the eastern Tibetan Plateau. For Ecol Manag 312:10–18

    Article  Google Scholar 

  • Zhang QJ, Fu BJ, Chen LD, Zhao WW, Yang QK, Liu GB, Gulinck H (2004) Dynamics and driving factors of agricultural landscape in the semiarid hilly area of the Loess Plateau, China. Agric Ecosyst Environ 103:535–543

  • Zhang F, Zhang SL, Cheng ZJ, Zhao HY (2007) Time structure and dynamics of the insect communities in bush vegetation restoration areas of Zhifanggou watershed in Loess hilly region. Acta Ecol Sin 27:4555–4562

    Article  Google Scholar 

  • Zhang H, Song TQ, Wang KL, Du H, Yue YM, Wang GX, Zeng FP (2014) Biomass and carbon storage in an age-sequence of Cyclobalanopsis glauca plantations in southwest China. Ecol Eng 73:184–191

    Article  Google Scholar 

  • Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (No. 41201088, 41371506 and 41601058). The authors would like to acknowledge the contributions made by Christian J. Rivera (Princeton University, USA) regarding the English language revision of the manuscript in the early work. In addition, the authors wish to thank Journal of Forestry Research editors and reviewers for their constructive suggestions and language polish to improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cao.

Additional information

Project funding: This study was supported by the National Nature Science Foundation of China (Nos. 41201088, 41371506 and 41601058).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhang, P. & Cao, Y. Ecosystem carbon and nitrogen storage following farmland afforestation with black locust (Robinia pseudoacacia) on the Loess Plateau, China. J. For. Res. 29, 761–771 (2018). https://doi.org/10.1007/s11676-017-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0479-3

Keywords

Navigation