Skip to main content
Log in

Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The Fabaceae (legume family) is one of the largest families of plants with a worldwide distribution and a major role in agriculture and in agroforestry. A hard seed coat impermeable to water is a typical feature of several species. Physical dormancy delays and reduces germination so that mechanical, physical and chemical scarification methods have been classically used to break seed dormancy of many species. We evaluate the effectiveness of a methodology to scarify seeds of several woody Fabaceae of ecological and economical importance, including Robinia pseudoacacia and Acacia dealbata and the shrubs Cytisus scoparius, C. multiflorus and Ulex europaeus. We describe the optimized use of a handheld rotary tool (HRT), and compare its effectiveness with other scarification methods reported to break dormancy such as boiling or dry heating. Total germination and/or speed of germination were enhanced after the application of the HRT, with germination percentages significantly higher than those achieved by other methods of scarification. Based on a thorough literature review, a mode of action for the HRT is suggested which could operate by breaking the physical and physiological dormancy of treated seeds through the combined action of coat abrasion and moderate temperatures. Considering these results, we recommend the application of this rapid, effective, low-cost and highly reproducible HRT method to break seed dormancy and enhance germination of these species and others with similar dormancy constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdallah MM, Jones RA, El-Beltagy AS (1989) A method to overcome dormancy in Scotch broom (Cytisus scoparius). Environ Exp Bot 29(4):499–505

    Article  Google Scholar 

  • Abudureheman B, Liu HL, Zhang DY, Guan K (2014) Identification of physical dormancy and dormancy release patterns in several species (Fabaceae) of the cold desert, north-west China. Seed Sci Res 24(2):133–145

    Article  CAS  Google Scholar 

  • Álvarez-Iglesias L, Puig CG, Garabatos A, Reigosa MJ, Pedrol N (2014) Vicia faba aqueous extracts and plant material can suppress weeds and enhance crops. Allelopathy J 34(2):299–314

    Google Scholar 

  • Añorbe M, Gómez Gutiérrez JM, Pérez Fernández MA, Fernández Santos B (1990) Influence of temperature on seed germination of Cytisus multiflorus (L´Hér.) and Cytisus oromediterraneus Riv. Mar., in Spanish. Stvdia Oecol 7(1):85–100

    Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14(1):1–16

    Google Scholar 

  • Bentsink L, Hanson J, Hanhart CJ, Blankestijn-De Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, De Andrés MT, Reymond M, Van Eeuwijk F, Smeekens S, Koornneef M (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci 107(9):4264–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw A (1997) Restoration of mine lands using natural processes. Ecol Eng 8(4):255–269

    Article  Google Scholar 

  • Chaer GM, Resende AS, Campello EFC, de Faria SM, Boddey RM (2011) Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31(2):139–149

    Article  PubMed  Google Scholar 

  • Chiapusio G, Sánchez AM, Reigosa MJ, González L, Pellissier F (1997) Do germination indices adequately reflect allelochemical effects on the germination process? J Chem Ecol 23(11):2445–2454

    Article  CAS  Google Scholar 

  • Cruz ED, de Carvalho JEU (2006) Methods of overcoming dormancy in Schizolobium amazonicum Huber ex Ducke (Leguminosae–Caesalpinioideae) seeds, in Portuguese. Rev Bras Sementes 28(3):108–115

    Article  Google Scholar 

  • Dapont EC, Silva JBD, Oliveira JDD, Alves CZ, Dutra AS (2014) Methods of accelerating and standardising the emergence of seedlings in Schizolobium amazonicum. Rev Cienc Agron 45(3):598–605

    Article  Google Scholar 

  • De Bertoldi C, De Leo M, Braca A, Ercoli L (2009) Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides. Chemoecology 19(3):169–176

    Article  CAS  Google Scholar 

  • Doran JC (1986) Seed, nursery practice and establishment. In: Brown AG, Boland DJ, Doran JC, Martensz PN, Hall N (eds) Multipurpose Australian trees and shrubs. Lesser-known species for fuel wood and agroforestry. ACIAR, Canberra, pp 1–29

    Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171(3):501–523

    Article  CAS  PubMed  Google Scholar 

  • Ghantous KM, Sandler HA (2012) Mechanical scarification of dodder seeds with handheld rotary tool. Weed Technol 26(3):485–489

    Article  Google Scholar 

  • Ghassali F, Salkini AK, Petersen SL, Niane AA, Louhaichi M (2012) Germination dynamics of Acacia species under different seed treatments. Range Manag Agrofor 33(1):37–42

    Google Scholar 

  • Griffin AR, Midgley SJ, Bush D, Cunningham PJ, Rinaudo AT (2011) Global uses of Australian acacias—recent trends and future prospects. Divers Distrib 17(5):837–847

    Article  Google Scholar 

  • Hanley ME (2009) Thermal shock and germination in North-West European Genisteae: implications for heathland management and invasive weed control using fire. Appl Veg Sci 12(3):385–390

    Article  Google Scholar 

  • Herranz JM, Ferrandis P, Martínez Sánchez JJ (1998) Influence of heat on seed germination of seven Mediterranean Leguminosae species. Plant Ecol 136(1):95–103

    Article  Google Scholar 

  • ISTA, International Seed Testing Association (1999) International rules for seed testing. Seed Sci Technol 27(Suppl.):1–333

  • Janzen DH (1981) Enterolobium cyclocarpum seed passage rate and survival in horses, Costa Rican pleistocene seed dispersal agents. Ecology 62(3):593–601

    Article  Google Scholar 

  • Kelly KM, Van Staden J, Bell WE (1992) Seed coat structure and dormancy. Plant Growth Regul 11(3):201–209

    Article  Google Scholar 

  • Khadduri NY, Harrington JT (2002) Shaken, not stirred–a percussion scarification technique. Native Plants J 3(1):65–66

    Article  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Kull CA, Shackleton CM, Cunningham PJ, Ducatillon C, Dufour-Dror JM, Esler KJ, Zylstra MJ (2011) Adoption, use and perception of Australian acacias around the world. Divers Distrib 17(5):822–836

    Article  Google Scholar 

  • Ligero P, de Vega A, van der Kolk JC, van Dam JEG (2011) Gorse (Ulex europæus) as a possible source of xylans by hydrothermal treatment. Ind Crops Prod 33(1):205–210

    Article  CAS  Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186(4):817–831

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67(1):1–11

    Article  Google Scholar 

  • Mayer AM, Poljakoff-Mayber A (1982) The germination of seeds. Pergamon, London

    Google Scholar 

  • Mondoni A, Tazzari ER, Zubani L, Orsenigo S, Rossi G (2013) Percussion as an effective seed treatment for herbaceous legumes (Fabaceae): implications for habitat restoration and agriculture. Seed Sci Technol 41(2):175–187

    Article  Google Scholar 

  • Nongrum A, Kharlukhi L (2013) Effect of seed treatment for laboratory germination of Albizia chinensis. J For Res 24(4):709–713

    Article  CAS  Google Scholar 

  • Patanè C, Gresta F (2006) Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques. J Arid Environ 67(1):165–173

    Article  Google Scholar 

  • Peinetti R, Pereyra M, Kin A, Sosa A (1993) Effects of cattle ingestion on viability and germination rate of caldén (Prosopis caldenia) seeds. J Range Manag 46(6):483–486

    Article  Google Scholar 

  • Pereiras J, Puentes MA, Casal M (1985) Effect of high temperatures on gorse (Ulex europaeus L.) seed germination/Efecto de las altas temperaturas sobre la germinación de las semillas del tojo (Ulex europaeus L.), in Spanish. Stvdia Oecol 6:125–133

    Google Scholar 

  • Pérez S, Renedo CJ, Ortiz A, Delgado F, Fernández I (2014) Energy potential of native shrub species in northern Spain. Renew Energy 62:79–83

    Article  Google Scholar 

  • Pérez-Fernández MA, Calvo-Magro E, Valentine A (2016) Benefits of the symbiotic association of shrubby legumes for the rehabilitation of degraded soils under Mediterranean climatic conditions. Land Degrad Dev 27(2):395–405

    Article  Google Scholar 

  • Pinto PC, Oliveira C, Costa CA, Gaspar A, Faria T, Ataíde J, Rodrigues AE (2015) Kraft delignification of energy crops in view of pulp production and lignin valorization. Ind Crops Prod 71:153–162

    Article  CAS  Google Scholar 

  • Pleguezuelo CRR, Zuazo VHD, Bielders C, Bocanegra JAJ, PereaTorres F, Martínez JRF (2014) Bioenergy farming using woody crops. A review. Agron Sustain Dev 35(1):95–119

    Article  Google Scholar 

  • Richardson RG, Hill RL (1998) The biology of Australian weeds 34. Ulex europaeus L. Plant Prot Q 13(2):46–58

    Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17(5):788–809

    Article  Google Scholar 

  • Rivas M, Reyes O, Casal M (2006) Influence of heat and smoke treatments on the germination of six leguminous shrubby species. Int J Wildland Fire 15(1):73–80

    Article  Google Scholar 

  • Rüdiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18(8):589–613

    Article  PubMed  Google Scholar 

  • Sarikurkcu C, Kocak MS, Tepe B, Uren MC (2015) An alternative antioxidative and enzyme inhibitory agent from Turkey: Robinia pseudoacacia L. Ind Crops Prod 78:110–115

    Article  CAS  Google Scholar 

  • Sheppard AW, Hodge P, Paynter Q, Rees M (2002) Factors affecting invasion and persistence of broom Cytisus scoparius in Australia. J Appl Ecol 39(5):721–734

    Article  Google Scholar 

  • Sheppard AW, Shaw RH, Sforza R (2006) Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res 46(2):93–117

    Article  Google Scholar 

  • Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:1–19

    Google Scholar 

  • Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature—induced growth in Arabidopsis. Plant J 60(4):589–601

    Article  CAS  PubMed  Google Scholar 

  • Straker KC, Quinn LD, Voigt TB, Lee DK, Kling GJ (2015) Black locust as a bionergy feedstock: a review. BioEnergy Res 8(3):1117–1135

    Article  CAS  Google Scholar 

  • Sy A, Grouzis M, Danthu P (2001) Seed germination of seven Sahelian legume species. J Arid Environ 49(4):875–882

    Article  Google Scholar 

  • Tárrega R, Calvo L, Trabaud L (1992) Effect of high temperatures on seed germination of two woody Leguminosae. Vegetatio 102(2):139–147

    Article  Google Scholar 

  • Teketay D (1996) Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia. For Ecol Manag 80(1):209–223

    Article  Google Scholar 

  • Thanos CA, Georghiou K, Kadis C, Pantazi C (1992) Cistaceae: a plant family with hard seeds. Isr J Bot 41(4–6):251–263

    Google Scholar 

  • Tigabu M, Oden PC (2001) Effect of scarification, gibberellic acid and temperature on seed germination of two multipurpose Albizia species from Ethiopia. Seed Sci Technol 29(1):11–20

    Google Scholar 

  • Tischer S, Hübner T (2002) Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int J Phytorem 4(3):187–203

    Article  CAS  Google Scholar 

  • Toda R, Ishikawa H (1951) Hasting the germination of Robinia seeds by the use of boiling water. J Jpn For Soc 33(9):312

    Google Scholar 

  • Twigg LE, Lowe TJ, Taylor CM, Calver MC, Martin GR, Stevenson C, How R (2009) The potential of seed—eating birds to spread viable seeds of weeds and other undesirable plants. Austral Ecol 34(7):805–820

    Article  Google Scholar 

  • Tzvetkova N, Petkova K (2015) Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J Environ Biol 36(1):59–63

    PubMed  Google Scholar 

  • Uchida A, Yamamoto KT (2002) Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol 43(6):647–651

    Article  CAS  PubMed  Google Scholar 

  • Vilela AE, Ravetta DA (2001) The effect of seed scarification and soil-media on germination, growth, storage, and survival of seedlings of five species of Prosopis L. (Mimosaceae). J Arid Environ 48(2):171–184

    Article  Google Scholar 

  • Wali MK (1999) Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant Soil 213(1–2):195–220

    Article  CAS  Google Scholar 

  • Watterson NA, Jones JA (2006) Flood and debris flow interactions with roads promote the invasion of exotic plants along steep mountain streams, western Oregon. Geomorphology 78(1):107–123

    Article  Google Scholar 

  • Yáñez R, Gómez B, Martínez M, Gullón B, Alonso JL (2014) Valorization of an invasive woody species, Acacia dealbata, by means of Ionic liquid pretreatment and enzymatic hydrolysis. J Chem Technol Biotechnol 89(9):1337–1343

    Article  Google Scholar 

  • Zare S, Tavili A, Darini MJ (2011) Effects of different treatments on seed germination and breaking seed dormancy of Prosopis koelziana and Prosopis juliflora. J For Res 22(1):35–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the patience of Carlos Bolaño (‘our’ dear Lab Technician) during artwork elaboration (and every time), and Esther Pájaro and Iria Rodríguez-Alén for their welcome hands-on assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Pedrol.

Additional information

Project Funding: This work was funded by the Xunta de Galicia (Spain) through Project XUGA 07MDS030310PR.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrol, N., Puig, C.G., López-Nogueira, A. et al. Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy. J. For. Res. 29, 283–290 (2018). https://doi.org/10.1007/s11676-017-0445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0445-0

Keywords

Navigation