Skip to main content
Log in

Separating component parts of soil respiration under Robinia pseudoacacia plantation in the Taihang Mountains, China

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Partitioning the respiratory components of soil surface CO2 efflux is important in understanding carbon turnover and in identifying the soil carbon sink/source function in response to land-use change. The sensitivities of soil respiration components on changing climate patterns are currently not fully understood. We used trench and isotopic methods to separate total soil respiration into autotrophic (R A ) and heterotrophic components (R H ). This study was undertaken on a Robinia pseudoacacia L. plantation in the southern Taihang Mountains, China. The fractionation of soil 13CO2 was analyzed by comparing the δ13C of soil CO2 extracted from buried steel tubes with results from Gas Vapor Probe Kits at a depth of 50 cm at the preliminary test (2.03‰). The results showed that the contribution of autotrophic respiration (fR A ) increased with increasing soil depth. The contribution of heterotrophic respiration (fR H ) declined with increasing soil depth. The contribution of autotrophic respiration was similar whether estimated by the trench method (fR A , 23.50%) or by the isotopic method in which a difference in value of 13C between soil and plant prevailed in the natural state (RC, 21.03%). The experimental error produced by the trench method was insignificant as compared with that produced by the isotopic method, providing a technical basis for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29(1):535–562

    Article  CAS  Google Scholar 

  • Amundson RG, Davidson EA (1990) Carbon dioxide and nitrogenous gases in the soil atmosphere. J Geochem Explor 38(1–2):13–41

    Article  CAS  Google Scholar 

  • Amundson R, Stern L, Baisden T, Wang Y (1998) The isotopic composition of soil and soil-respired CO2. Geoderma 82(1–3):83–114

    Article  Google Scholar 

  • Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999) Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). Soil Sci Soc Am J 63(5):1429–1435

    Article  CAS  Google Scholar 

  • Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT (2007) A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant, Cell Environ 30(4):469–482

    Article  CAS  Google Scholar 

  • Bhupinderpal-Singh NA, OttossonLöfvenius M, Högberg MN, Mellamder PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26(8):1287–1296

    Article  CAS  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiol 24(12):1387–1395

    Article  PubMed  Google Scholar 

  • Bouma T, Bryla DR (2000) On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations. Plant Soil 227(1–2):215–221

    Article  CAS  Google Scholar 

  • Cerling TE (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71(2):229–240

    Article  CAS  Google Scholar 

  • Cerling TE, Quade J (1992) Carbon isotopes in modern soils. Encycl Earth Syst Sci 1:423–429

    Google Scholar 

  • Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55(11):3403–3405

    Article  CAS  Google Scholar 

  • Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant Soil 183(2):263–268

    Article  CAS  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Pinés E, Schindlbacher A, Pfeffer M, Jandl R, Zechmeister-Boltenstern S, Rubio A (2010) Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest. Eur J For Res 129(1):101–109

    Article  Google Scholar 

  • Doerr H, Münnich KO (1980) Carbon-14 and carbon-13 in soil CO2. Radiocarbon 22(3):909–918

    Article  CAS  Google Scholar 

  • Enting IG, Trudinger CM, Francey RJ (1995) A synthesis inversion of the concentration and δ13 C of atmospheric CO2. Tellus B 47(1–2):35–52

    Article  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56(4):289–295

    Article  Google Scholar 

  • Formánek P, Ambus P (2004) Assessing the use of δ13C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest. Rapid Commun Mass Spectrom 18(8):897–902

    Article  PubMed  Google Scholar 

  • Grace J, Rayment M (2000) Respiration in the balance. Nature 404(6780):819–820

    Article  CAS  PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48(1):115–146

    Article  CAS  Google Scholar 

  • Jassal RS, Black TA (2006) Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: theory and practice. Agric For Meteorol 140(1–4):193–202

    Article  Google Scholar 

  • Jiang L, Shi F, Li B, Luo Y, Chen J (2005) Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China. Tree Physiol 25(9):1187–1195

    Article  PubMed  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38(3):425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16(12):3386–3406

    Article  Google Scholar 

  • Lee M, Nakane K, Nakatsubo T, Koizumi H (2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 101:311–318

    Article  Google Scholar 

  • Lin G, Ehleringer JR (1997) Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants. Plant Physiol 114(1):391–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin G, Ehleringer JR, Rygiewicz P, Johnson MG, Tingey DT (1999) Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Glob Chang Biol 5(2):157–168

    Article  Google Scholar 

  • Liu W, Moriizumi J, Yamazawa H, Iida T (2006) Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil. J Environ Radioact 90(3):210–223

    Article  CAS  PubMed  Google Scholar 

  • Luan J, Liu S, Zhu X, Wang J (2011) Soil carbon stocks and fluxes in a warm-temperate oak chronosequence in China. Plant Soil 347(1–2):243–253

    Article  CAS  Google Scholar 

  • Meng X (2006) Holzmesslehre. China Forestry Publishing, Beijing

    Google Scholar 

  • Millard P, Midwood AJ, Hunt JE, Whitehead D, Boutton TW (2008) Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components, using natural gradients in soil δ13C in an undisturbed savannah soil. Soil Biol Biochem 40(7):1575–1582

    Article  CAS  Google Scholar 

  • Nakane K, Kohno T, Horikoshi T (1996) Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest. Ecol Res 11(2):111–119

    Article  Google Scholar 

  • Natelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52(6):1633–1640

    Article  CAS  Google Scholar 

  • Nordgren A, Ottosson-Löfvenius M, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26(8):1287–1296

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38(5):328–336

    Article  Google Scholar 

  • Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung G, Wechsung F, Adamsen F (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2(3):193–201

    Article  CAS  Google Scholar 

  • Phillips RP, Fahey TJ (2005) Patterns of rhizosphere carbon flux in sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) saplings. Glob Chang Biol 11(6):983–995

    Article  Google Scholar 

  • Prévost-Bouré NC, Ngao J, Berveiller D, Bonal D, Damesin C, Dufrêne E, Lata J, Dantec VL, Longdoz B, Ponton S, Soudani K, Epron D (2009) Root exclusion through trenching does not affect the isotopic composition of soil CO2 efflux. Plant Soil 319(1–2):1–13

    Article  Google Scholar 

  • Robinson D, Scrimgeour CM (1995) The contribution of plant C to soil CO2 measured using δ13C. Soil Biol Biochem 27(12):1653–1656

    Article  CAS  Google Scholar 

  • Rochette P, Flanagan LB (1997) Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci Soc Am J 61(2):466–474

    Article  CAS  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Chang Biol 1(1):77–91

    Article  Google Scholar 

  • Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Chang Biol 12(2):205–216

    Article  Google Scholar 

  • Shen CD, Beer J, Ivy-Ochs S, Sun Y, Yi W, Kubik PW, Suter M, Li Z, Peng S, Yang Y (2004) 10Be, 14C distribution, and soil production rate in a soil profile of a grassland slope at Heshan Hilly Land, Guangdong. Radiocarbon 46(1):445–454

    Article  CAS  Google Scholar 

  • Søe AR, Giesemann A, Anderson T, Weigel H, Buchmann N (2004) Soil respiration under elevated CO2 and its partitioning into recently assimilated and older carbon sources. Plant Soil 262(1–2):85–94

    Article  Google Scholar 

  • Subke J, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139(4):551–559

    Article  PubMed  Google Scholar 

  • Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73(1):231–256

    Article  Google Scholar 

  • Susfalk RB, Cheng WX, Johnson DW, Walker RF, Verburg P, Fu S (2002) Lateral diffusion and atmospheric CO2 mixing compromise estimates of rhizosphere respiration in a forest soil. Can J For Res 32(6):1005–1015

    Article  Google Scholar 

  • Tang J, Baldocchi DD (2005) Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 73(1):183–207

    Article  Google Scholar 

  • Trueman RJ, Gonzalez-Meler MA (2005) Accelerated belowground C cycling in a managed agriforest ecosystem exposed to elevated carbon dioxide concentrations. Glob Chang Biol 11(8):1258–1271

    Article  Google Scholar 

  • Wedin DA, Tieszen LL, Dewey B, Pastor J (1995) Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76(5):1383–1392

    Article  Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42(9):1372–1384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jinsong Zhang, Sen Lu, and Ning Zheng from Research Institute, Forestry of Chinese Academy of Forestry for their helpful comments and suggestions. This research was supported by the National Natural Science Foundation of China (41430747) and grant from the Beijing Municipal Education Commission (CEFF-PXM2016_014207_000038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxiao Yu.

Additional information

Project funding: This research was supported by the National Natural Science Foundation of China (41430747) and grant from the Beijing Municipal Education Commission (CEFF-PXM2016_014207_000038).

The online version is available at http://www.springerlink.com.

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Meng, P. & Yu, X. Separating component parts of soil respiration under Robinia pseudoacacia plantation in the Taihang Mountains, China. J. For. Res. 28, 529–537 (2017). https://doi.org/10.1007/s11676-016-0337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-016-0337-8

Keywords

Navigation