Skip to main content
Log in

Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: A review

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Biochar is normally produced as a by-product of bioenergy. However, if biochar is produced as a co-product with bioenergy from sustainably managed forests and used for soil amendment, it could provide a carbon neutral or even carbon negative solution for current environmental degradation problems. In this paper, we present a comprehensive review of biochar production as a co-product of bioenergy and its implications. We focus on biochar production with reference to biomass availability and sustainability and on biochar utilization for its soil amendment and greenhouse gas emissions reduction properties. Past studies confirm that northwestern Ontario has a sustainable and sufficient supply of biomass feedstock that can be used to produce bioenergy, with biochar as a co-product that can replace fossil fuel consumption, increase soil productivity and sequester carbon in the long run. For the next step, we recommend that comprehensive life cycle assessment of biochar-based bioenergy production, from raw material collection to biochar application, with an extensive economic assessment is necessary for making this technology commercially viable in northwestern Ontario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afrane G, Ntiamoah A. 2011. Comparative life cycle assessment of charcoal, biogas, and liquefied petroleum gas as cooking fuels in Ghana. Journal of Industrial Ecology, 15(4): 539–549.

    CAS  Google Scholar 

  • Alam MB, Pulkki R, Shahi C. 2012. Woody biomass availability for bioenergy production using forest depletion spatial data in northwestern Ontario. Canadian Journal of Forest Research, 42(3): 506–516.

    Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR. 2011. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5–6): 309–320.

    CAS  Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T. 2009. Biochar amendment techniques for upland rice production in northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1–2): 81–84.

    Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337(1–2): 1–18.

    CAS  Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M. 2013. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy, 5(2): 132–143.

    CAS  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12): 3269–3282.

    CAS  PubMed  Google Scholar 

  • BioCap 2008. Analyzing Ontario biofuel options: Greenhouse gas mitigation efficiency and costs. BIOCAP Canada Foundation, Queen’s University, Canada

    Google Scholar 

  • Blackwell P, Krull E, Butler G, Herbert A, Solaiman Z. 2010. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Australian Journal of Soil Research, 48(6–7): 531–545.

    Google Scholar 

  • Boateng AA, Mullen CA, Goldberg NM, Hicks KB, Devine TE, Lima IM, McMurtrey JE. 2010. Sustainable production of bioenergy and biochar from the straw of high-biomass soybean lines via fast pyrolysis. Environmental Progress and Sustainable Energy, 29(2): 175–183.

    CAS  Google Scholar 

  • Brick S, Wisconsin M. 2010. Biochar: Assessing the promise and risks to guide US policy. Natural Resources Defense Council: NRDC Issue Paper, November 2010. http://www.nrdc.org/energy/files/biochar_paper.pdf. [Accessed on 17 Feb 2013].

    Google Scholar 

  • Brown RA, Kercher AK, Nguyen TH, Nagle DC, Ball WP 2006. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry, 37(3): 321–333.

    CAS  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H. 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46: 73–79.

    CAS  Google Scholar 

  • Bruun EW, Muller-Stover D, Ambus P, Hauggaard-Nielsen H. 2011. Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. European Journal of Soil Science, 62(4): 581–589.

    CAS  Google Scholar 

  • Butnar I, Rodrigo J, Gasol CM, Castells F. 2010. Life-cycle assessment of electricity from biomass: Case studies of two biocrops in Spain. Biomass and Bioenergy, 34(12): 1780–1788.

    CAS  Google Scholar 

  • Campbell JE, Lobell DB, Genova RC, Field CB. 2008. The global potential of bioenergy on abandoned agriculture lands. Environmental Science and Technology, 42(15): 5791–5794.

    CAS  PubMed  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8): 629–634.

    CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S. 2009. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources Conservation and Recycling, 53(8): 434–447.

    Google Scholar 

  • Cherubini F. Stromman AH. 2011. Life cycle assessment of bioenergy sys tems: State of the art and future challenges. Bioresource Technology, 102(2): 437–451.

    CAS  PubMed  Google Scholar 

  • Clough TJ, Condron LM. 2010. Biochar and the nitrogen cycle: Introduction. Journal of Environmental Quality, 39(4): 1218–1223.

    CAS  PubMed  Google Scholar 

  • Dwivedi P, Bailis R, Bush TG, Marinescu M. 2011. Quantifying GWI of wood pellet production in the southern United States and its subsequent utilization for electricity production in the Netherlands/Florida. Bioenergy Research, 4(3): 180–192.

    Google Scholar 

  • EC 2011. Environment Canada Website. Available at: http://www.ec.gc.ca/cc/default.asp?lang=En&n=E907D4D5-1 [Assessed on 5 Nov 2012]

    Google Scholar 

  • EC 2012. Environment Canada Website. Available at: http://www.ec.gc.ca/cc/default.asp?lang=En&n=E907D4D5-1 [Assessed on 5 Aug] 2013

    Google Scholar 

  • Ericksen PJ, Ingram JSI, Liverman DM. 2009. Food security and global environmental change: emerging challenges. Environmental Science and Policy, 12: 373–377

    Google Scholar 

  • Fantozzi F, Buratti C. 2010. Life cycle assessment of biomass chains: Wood pellet from short rotation coppice using data measured on a real plant. Biomass and Bioenergy, 34(12): 1796–1804.

    CAS  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. 2008. Land clearing and the biofuel carbon debt. Science, 319(5867): 1235–1238.

    CAS  PubMed  Google Scholar 

  • Fowles M. 2007. Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 31(6): 426–432.

    CAS  Google Scholar 

  • Galinato SP, Yoder JK, Granatstein D. 2011. The economic value of biochar in crop production and carbon sequestration. Energy Policy, 39(10): 6344–6350.

    Google Scholar 

  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the Asabe, 51(6): 2061–2069.

    Google Scholar 

  • Gaunt JL, Lehmann J. 2008. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science and Technology, 42(11): 4152–4158.

    CAS  PubMed  Google Scholar 

  • Glaser B, Lehmann J, Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biology and Fertility of Soils, 35(4): 219–230.

    CAS  Google Scholar 

  • Gonzalez-Garcia S, Berg S, Feijoo G, Moreira MT 2009. Comparative environmental assessment of wood transport models: a case study of a Swedish pulp mill. Science of the Total Environment, 407(11): 3530–3539.

    CAS  PubMed  Google Scholar 

  • Granatstein D, Kruger C, Collins HP, Garcia-Perez M, Yoder J. 2009. Use of biochar from the pyrolysis of waste organic material as a soil amendment. Center for Sustaining Agric. Nat. Res. Washington State University, Wenatchee, WA. WSDA Interagency Agreement. C0800248. http://www.ecy.wa.gov/pubs/0907062.pdf. [Accessed on 25 Jan 2013]

    Google Scholar 

  • Gundale MJ, DeLuca TH. 2007. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the Ponderosa pine/Douglas-fir ecosystem. Biology and Fertility of Soils, 43(3): 303–311.

    CAS  Google Scholar 

  • Hacatoglu K, McLellan PJ, Layzell DB. 2011. Feasibility study of a Great Lakes bioenergy system. Bioresource Technology, 102(2): 1087–1094.

    CAS  PubMed  Google Scholar 

  • Hacatoglu K. 2009. Bioenergy systems in Canada: towards energy security and climate change solutions. Queen’s University, Canada. pp. 149.

    Google Scholar 

  • Hammond J, Shackley S, Sohi S, Brownsort P. 2011. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy, 39(5): 2646–2655.

    CAS  Google Scholar 

  • Hart S. 2013. Charcoal in North American boreal forests: Implications for carbon storage and management. PhD Thesis. Lakehead University, Thunder Bay, ON, Canada. 102 pp.

    Google Scholar 

  • Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S. 2014. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal, 8: 660–674. doi: 10.1038/ismej.2013.160.

    CAS  PubMed  Google Scholar 

  • Hazlett PW, Gordon AM, Voroney RP, Sibley PK. 2007. Impact of harvesting and logging slash on nitrogen and carbon dynamics in soils from upland spruce forests in northeastern Ontario. Soil Biology and Biochemistry, 39: 43–57.

    CAS  Google Scholar 

  • Hsu DD, Inman D, Heath GA, Wolfrum EJ, Mann MK, Aden A. 2010. Life cycle environmental impacts of selected US ethanol production and use pathways in 2022. Environmental Science and Technology, 44(13): 5289–5297.

    CAS  PubMed  Google Scholar 

  • Huang YF, Syu FS, Chiueh PT, Lo SL. 2013. Life cycle assessment of biochar cofiring with coal. Bioresource Technology, 131: 166–171.

    CAS  PubMed  Google Scholar 

  • Husk B and Major J. 2010. Commercial scale agricultural biochar field trial in Québec, Canada, over two years: Effects of biochar on soil fertility, biology, crop productivity and quality. BlueLeaf Inc. Quebec, Canada. 32pp.

    Google Scholar 

  • Ibarrola R, Shackley S, Hammond J. 2012. Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment. Waste Management, 32(5): 859–868.

    CAS  PubMed  Google Scholar 

  • IEA 2012. World Energy outlook 2012: Executive summary. Paris, France: International Energy Agency (IEA).

    Google Scholar 

  • IESO 2013. Independent Electricity System Operator New Release. 2013. http://www.ieso.ca/imoweb/media/md_newsitem.asp?newsID=6323 [Accessed 5 Jan 2013]

    Google Scholar 

  • Iswaran V, Jauhri KS, Sen A. 1980. Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biology and Biochemistry, 12: 191–192.

    Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144(1): 175–187.

    Google Scholar 

  • Kameyama K, Shinogi Y, Miyamoto T, Agarie K. 2010. Estimation of net carbon sequestration potential with farmland application of bagasse charcoal: life cycle inventory analysis through a pilot sugarcane bagasse carbonisation plant. Australian Journal of Soil Research, 48(6–7): 586–592.

    Google Scholar 

  • Kennedy M, Wong R, Vandenbroek A, Lovekin D, Raynolds M. 2011. Biomass sustainability analysis. An assessment of Ontario-sourced forest-based biomass for electricity generation. FINAL REPORT. Revision C. Pembina Institute, Alberta.

    Google Scholar 

  • Kishimoto S, Sugiura G. 1985. Charcoal as soil conditioner. International Achievements for the Future, 5: 12–23.

    Google Scholar 

  • Koide RT, Petprakob K, Peoples M. 2011. Quantitative analysis of biochar in field soil. Soil Biology and Biochemistry, 43(7): 1563–1568.

    CAS  Google Scholar 

  • Kookana R. 2010. The role of biochar in modifying the environmental fate, bioavailability and efficacy of pesticides in soils: a review. Australian Journal of Soil Research, 48(6): 627–637.

    CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B. 2011. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. In: Donald LS. (eds), Advances in Agronomy. 112. Academic Press, pp. 103–143.

    CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL. 2010. Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma, 158(3–4): 443–449.

    CAS  Google Scholar 

  • Laird DA. 2008. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100(1): 178–181.

    Google Scholar 

  • Lal R, Pimentel D. 2007. Biofuels from crop residues. Soil and Tillage Research, 93: 237–238.

    Google Scholar 

  • Lal R. 2007. World soils and global issues. Soil and Tillage Research, 97(1): 1–4.

    Google Scholar 

  • Larson ED. 2006. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy for Sustainable Development, 10(2): 109–126. doi: 10.1016/S0973-0826(08)60536-0.

    CAS  Google Scholar 

  • Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249: 343–357.

    CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M. 2006. Biochar sequestration in terrestrial ecosystems — a review. Mitigation and Adaptation Strategies for Global Change, 11(2): 395–419.

    Google Scholar 

  • Lehmann J, Rondon M. 2006. Biochar soil management on highly weathered soils in the humid tropics. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J. (eds), Biological approaches to sustainable soil systems. Boca Raton, FL: CRC/Taylor & Francis, pp. 517–530.

    Google Scholar 

  • Lehmann J. 2007. A handful of carbon. Nature, 447(7141): 143–144.

    CAS  PubMed  Google Scholar 

  • Lemoine DM, Plevin RJ, Cohn, AS, Jones AD, Brandt AR, Vergara SE, Kammen DM. 2010. The climate impacts of bioenergy systems depend on market and regulatory policy contexts. Environmental Science and Technology, 44(19): 7347–7350. doi: 10.1021/es100418p.

    CAS  PubMed  Google Scholar 

  • Magelli F, Boucher K, Bi HT, Melin S, Bonoli A. 2009. An environmental impact assessment of exported wood pellets from Canada to Europe. Biomass and Bioenergy, 33(3): 434–441.

    Google Scholar 

  • Mainville N. 2011. Fueling a biomess: Why burning trees for energy will harm people, the climate and forests. Greenpeace, Montreal, Quebec. Pp40.

    Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C. 2010b. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16(4): 1366–1379.

    Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J. 2010a. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1–2): 117–128.

    CAS  Google Scholar 

  • Mankasingh U, Choi PC, Ragnarsdottir V. 2011. Biochar application in a tropical, agricultural region: A plot scale study in Tamil Nadu, India. Applied Geochemistry, 26: S218–S221.

    CAS  Google Scholar 

  • McCarl BA, Peacoke C, Chrisman R, Kung CC, Sands RD. 2009. Economics of biochar production, utilization and greenhouse gas offsets. In: Lehmann J, Joseph S. (eds), Biochar for environmental management science and technology. London, Washington D.C.: Earthscan, pp. 341–358.

    Google Scholar 

  • McElligott K, Page-Dumroese D, Coleman M. 2011. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration. USDA Rocky Mountain Research Station. Rep. RN-46.

    Google Scholar 

  • Mckechnie J, Colombo S, Chen JX, Mabee W, Maclean HL. 2011. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environmental Science and Technology, 45(2): 789–795.

    CAS  PubMed  Google Scholar 

  • MNR 2011. Forest Resources of Ontario 2011. Ministry of Natural Resources Ontario. Available at: http://www.mnr.gov.on.ca/stdprodconsume/groups/lr/@mnr/@forests/documents/document/stdprod_092922.pdf. [Accessed on 5 June 2012].

    Google Scholar 

  • MNR 2012. Forest Management Units in Ontario. Ministry of Natural Resources Ontario. Available at:http://www.mnr.gov.on.ca/en/Business/Forests/1ColumnSubPage/STEL02_163535.html. [Accessed on 6 Jan 2013].

    Google Scholar 

  • MOE 2010. Ontario’s coal phase out plan. Ministry of Environment Ontario. http://news.ontario.ca/mei/en/2009/09/ontarios-coal-phase-out-plan.html. [Accessed on 27 June 2012].

    Google Scholar 

  • MOE 2010a. Ontario Ministry of the Environment: Green Energy Act. 2010. http://www.ene.gov.on.ca/environment/en/legislation/green_energy_act/i ndex.htm. [Accessed on 28 Jan 2013]

    Google Scholar 

  • Mohan D, Charles U, Steele PH. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels, 20(3): 848–889. doi: 10.1021/ef0502397.

    CAS  Google Scholar 

  • Moon JH, Lee JW, Lee UD. 2011. Economic analysis of biomass power generation schemes under renewable energy initiative with Renewable Portfolio Standards (RPS) in Korea. Bioresource Technology, 102(20): 9550–9557.

    CAS  PubMed  Google Scholar 

  • Nepal P, Grala RK, Grebner DL. 2012. Financial feasibility of increasing carbon sequestration in harvested wood products in Mississippi. Forest Policy and Economics, 14(1): 99–106.

    Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3: 195–206. www.aes.northeastern.edu, ISSN 1939-2621.

    CAS  Google Scholar 

  • NRCan 2010. Is forest bioenergy good for the environment? Canadian Forest Service Science-Policy Notes. Natural Resources Canada, Canadian Forest Service, Ottawa. 3 p.

    Google Scholar 

  • Obernberger I, Thek G. 2010. The Pellet Handbook: The Production and Thermal Utilization of Pellets. London, Washington, D.C.: Earthscan, p.549 + xxxii.

    Google Scholar 

  • Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N. 2008. Effects of charcoal production on soil physical properties in Ghana. Journal of Plant Nutrition and Soil Science, 171: 591–596.

    CAS  Google Scholar 

  • OPG 2011. Ontario Power Generation Biomass Sustainability Analysis Summary Report. Pembina Institute 2011.

    Google Scholar 

  • OPG 2012. Ontario Power Generation Atikokan Generating Station biomass fuel suppliers announced: meeting the needs of a growing economy in Northwestern Ontario. 2012. http://www.opg.com/news/releases/121122Atikokan%20Fuel%20Contra cts_FINAL.pdf. [Accessed on 30 Jan 2013].

    Google Scholar 

  • Pa A, Bi XTT, Sokhansanj S. 2011. A life cycle evaluation of wood pellet gasification for district heating in British Columbia. Bioresource Technology, 102(10): 6167–6177.

    CAS  PubMed  Google Scholar 

  • Pa A, Craven JS, Bi XTT, Melin S, Sokhansanj S. 2012. Environmental footprints of British Columbia wood pellets from a simplified life cycle analysis. International Journal of Life Cycle Assessment, 17(2): 220–231.

    CAS  Google Scholar 

  • Palma MA, Richardson JW, Roberson BE, Ribera LA, Outlaw J, Munster C. 2011. Economic feasibility of a mobile fast pyrolysis system for sustainable bio-crude oil production. International Food and Agribusiness Management Review, 14(3):1–16

    Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and soil, 348(1–2): 439–451.

    CAS  Google Scholar 

  • Pedlar JH, Pearce JL, Venier LA, McKenney DW. 2002. Coarse woody debris in relation to disturbance and forest type in boreal Canada. Forest Ecology and Management, 158: 189–194.

    Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T. 2009. Food versus biofuels: Environmental and economic costs. Human Ecology, 37(1): 1–12.

    Google Scholar 

  • Pratt K, Moran D. 2010. Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass and Bioenergy, 34(8): 1149–1158.

    CAS  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 104(24): 10288–10293.

    CAS  PubMed Central  PubMed  Google Scholar 

  • RFP (Resolute Forest Products) 2012. Our view of sustainability. Annual sustainability report for 2011 performance. Resolute forest products. http://www.resolutefp.com/uploadedFiles/Media/Publications/Resolute_ Sustainability_Report_2011.pdf. [Accessed on 20 July 2013].

    Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J. 2010. Life cycle assessment of biochar systems: Estimating the energetic, economic and climate change potential. Environmental Science and Technology, 44(2): 827–833.

    CAS  PubMed  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA. 2009. A safe operating space for humanity. Nature, 461(7263): 472–475.

    PubMed  Google Scholar 

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43: 699–708.

    Google Scholar 

  • Scheer C. 2011. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and soil, 345(1–2): 47–58.

    CAS  Google Scholar 

  • Schlamadinger B, Apps M, Bohlin F, Gustavsson L, Jungmeier G, Marland G, Pingoud K, Savolainen I. 1997. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass and Bioenergy, 13(6): 359–375.

    CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton R, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH. 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867): 1238–1240.

    CAS  PubMed  Google Scholar 

  • Sebastian F, Royo J, Gomez M. 2011. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology. Energy, 36(4): 2029–2037.

    Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 39(4): 1224–1235.

    CAS  PubMed  Google Scholar 

  • Smith JL, Collins HP, Bailey VL, 2010. The effect of young biochar on soil respiration. Soil Biology and Biochemistry, 42: 2345–2347.

    CAS  Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bol R. 2009. Biochar’s roles in soil and climate change: A review research needs. CISRO. Rep. Land and Water Science Report 05/09. 64 pp.

    Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R. 2010. A review of biochar and its use and function in soil. In Donald LS. (eds), Advances in Agronomy. Vol 105. Academic Press, pp. 47–82.

    Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America 106(6): 1704–1709.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sparkes J, Stoutjesdijk P. 2011. Biochar: implications for agricultural productivity. Australian Bureau of Agricultural and Resource Economics and Sciences. Rep. ABARES Technical Report No. 11.6.

    Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA. 2012. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41(4): 973–989.

    CAS  PubMed  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4): 574–581.

    CAS  PubMed  Google Scholar 

  • Steele P, Puettmann ME, Penmetsa VK, Cooper JE. 2012. Life-cycle assessment of pyrolysis bio-oil production. Forest Products Journal, 62(4): 326–334.

    CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, MaceDo JLV, Blum WEH, Zech W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291: 275–290.

    CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM. 2012. Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350(1–2): 57–69.

    CAS  Google Scholar 

  • Tang W, Tang AY. 2014. Transgenic woody plants for biofuel. Journal of Forestry Research, 25(2): 225–236.

    CAS  Google Scholar 

  • Ter-Mikaelian MT, Colombo SJ, Chen JX. 2008. Fact and fantasy about forest carbon. Forestry Chronicle, 84(2): 166–171.

    Google Scholar 

  • Ter-Mikaelian MT, McKechnie J, Colombo SJ, Chen J, MacLean HL. 2011. The carbon neutrality assumption for forest bioenergy: A case study for northwestern Ontario. Forestry Chronicle, 87(5): 644–652.

    Google Scholar 

  • Thomas S. 2013. Biochar and its potential in Canadian Forestry. Silviculture Mag. Winter 2013, P 4–6. http://www.silviculturemagazine.com/sites/silviculturemagazine.com/files/issues/2013020712/Winter%20201 3.pdf. [Accessed on 3 Mar 2013]

    Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson, E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. 2009. Beneficial biofuels: The food, energy and environment trilemma. Science, 325(5938): 270–271.

    CAS  PubMed  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1–2): 235–246.

    Google Scholar 

  • Van-Loo S, Koppejan J. 2008. The handbook of biomass combustion and cofiring. Earthscan, London. Washington, DC, p. 442+xii.

    Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC 2007. Mycorrhizal responses to biochar in soil — concepts and mechanisms. Plant and Soil, 300(1–2): 9–20.

    CAS  Google Scholar 

  • Waters D, Zwieten L, Singh BP, Downie A, Cowie AL, Lehmann J. 2011. Biochar in soil for climate change mitigation and adaptation. In: Singh BP, Cowie AL, Chan KY (eds), Soil Health and Climate Change. 29 ed. Springer Berlin Heidelberg, pp. 345–368.

    Google Scholar 

  • West TO, Marland G. 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91: 217–232

    Google Scholar 

  • Wiebe S, Morris D, Luckai N, Reid D. 2012. Coarse woody debris dynamics following biomass harvesting: Tracking carbon and nitrogen patterns during early stand development in upland black spruce ecosystems. International Journal of Forest Engineering, 23(1): 25–32. doi: 10.1080/14942119.2012.10739957

    Google Scholar 

  • Wood SM, Layzell DB. 2003. A Canadian biomass inventory: Feedstocks for a bio-based economy. BIOCAP Canada Foundation, Queen’s University.

    Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1. Article No: 56 doi: 10.1038/ncomms1053

    Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M. 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition, 52(4): 489–495.

    CAS  Google Scholar 

  • Zhang Y, McKechnie J, Cormier D, Lyng R, Mabee W, Ogino A, MacLean HL. 2010. Life cycle emissions and cost of producing electricity from coal, natural Gas and wood pellets in Ontario, Canada. Environmental Science and Technology, 44(1): 538–544.

    CAS  PubMed  Google Scholar 

  • Zimmerman AR. 2010. Abiotic and microbial oxidation of laboratory produced black carbon (biochar). Environmental Science and Technology, 44(4): 1295–130.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krish Homagain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homagain, K., Shahi, C., Luckai, N. et al. Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: A review. Journal of Forestry Research 25, 737–748 (2014). https://doi.org/10.1007/s11676-014-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0522-6

Keywords

Navigation