Skip to main content
Log in

Identification of SSR loci in Betula luminifera using birch EST data

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Expressed sequence tags (ESTs) are generated from single-pass sequencing of randomly picked cDNA clones and can be used for development of simple sequence repeat (SSR) markers or microsatellites. However, EST databases have been developed for only a small number of species. This paper provides a case study of the utility of freely available birch EST resources for the development of markers necessary for the genetic analysis of Betula luminifera. Based on birch EST data, primers for 80 EST-SSR candidate loci were developed and tested in birch. Of these, 59 EST-SSR loci yielded single, stable and clear PCR products. We then tested the utility of those 59 markers in B. luminifera. The results showed 28 (47.6%) yielded stable and clear PCR products for at least one B. luminifera genotype. In addition, this study describes a rapid and inexpensive alternative for the development of SSRs in species with scarce available sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC. 1991. Complementary DNA sequencing: expressed sequence tag and human genome project. Science, 252: 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Heun M. 1995. Barley microsatellites: allele variation and mapping. Plant Mol Biol, 27: 835–845.

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 32: 314–331.

    PubMed  CAS  Google Scholar 

  • Brady SM, Provart NJ. 2009. Web-queryable large-scale data sets for hyposis generation in plant biology. American society of plant Biologist, in web http://www.aspb.org.

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. 1991. “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res, 19: 4008.

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 14: 1675–1690.

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Balyan IS, Sharma PC, Ramesh B. 1996. Microsatellites in plants: a new class of molecular markers. Curr Sci, 70: 45–54.

    CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol, 11: 2453–2465.

    Article  PubMed  CAS  Google Scholar 

  • Lu Yongquan, Wang Xusheng, Huang Weisu, Xiao Tianxia, Zheng Yan, Wu Weiren. 2006a. Development of amplified consensus genetic markers in Gramineae based on rice intron length polymorphisms. Scientia Agricultura Sinica, 39: 433–439. (in Chinese with an English abstract).

    CAS  Google Scholar 

  • Lu Y, Ye Z, Wu W. 2006b. Analysis of the phylogenetic relationships among several species of gramineae using ACGM markers. Acta Genetica Sinica, 33: 1127–1131.

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF. 1980. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res, 8: 4321–4325.

    Article  PubMed  CAS  Google Scholar 

  • Pashley CH, Ellis JR, Mccauley DE, Burke JM. 2006. EST Database as a source for molecular markers: lessons from Helianthus. Journal of heredity, 97: 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Rong J, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ, Zhang H, Estill JC, Paterson AH. 2005. Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polypolidy. Genome research, 15: 1198–1210.

    Article  PubMed  CAS  Google Scholar 

  • Schuler GD. 1997. Sequence mapping by electronic PCR. Genome Res, 7: 541–550.

    PubMed  CAS  Google Scholar 

  • Toth G, Gaspari Z, Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey an analysis. Genome Res, 10: 967–981.

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 23: 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao X, Zhu J, Wu W. 2005. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Research, 12: 417–427.

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Dhanaraj AL, Rowland LJ, FU Y, Krebs SL, Arora R. 2005. Comparative analysis of expressed sequence tags from cold acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta, 221: 406–416.

    Article  PubMed  CAS  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res, 18: 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W. 2007. PIP: a database of potential intron polymorphism markers. Bioinformatics, 23: 2174–2177.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-quan Lu.

Additional information

Foundation project: This work was funded by the Provincial Natural Science Foundation of Zhejiang in China (Y307465).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Yq., Li, Hy., Jia, Q. et al. Identification of SSR loci in Betula luminifera using birch EST data. Journal of Forestry Research 22, 201–204 (2011). https://doi.org/10.1007/s11676-011-0150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-011-0150-3

Keywords

Navigation