Skip to main content
Log in

To Journal of Phase Equilibria and Diffusion Phase Relationship of the BaO-ZrO2-YO1.5 System at 1500 and 1600 °C

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Phase relationship of a BaO-ZrO2-YO1.5 system at 1500 and 1600 °C was examined in order to determine whether a phase separation at the composition of 15% yttrium-doped barium zirconate exists. According to a pseudoternary phase diagram of the BaO-ZrO2-YO1.5 system established by this work, the solubility of yttria into cubic barium zirconate at 1600 °C is 0.25 in a mole fraction of yttria \( (X_{{{\text{YO}}_{1.5} }} ) \). Thus, we confirmed that there is no phase separation at the composition of 15% yttrium-doped barium zirconate at 1600 °C. On the other hand, at 1500 °C, there might be a phase separation at the composition of 15% yttrium-doped barium zirconate into yttrium-doped barium zirconate where quite small amount of yttrium is doped and a new phase whose composition is close to reported BZ(II) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.D. Kreuer, Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-type Oxides, Solid State Ionics, 1999, 125, p 285-302

    Article  Google Scholar 

  2. H.G. Bohn and T. Schober, Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95, J. Am. Ceram. Soc., 2000, 83, p 768-772

    Article  Google Scholar 

  3. T. Schober and H.G. Bohn, Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor BaZr0.9Y0.1O2.95, Solid State Ionics, 2000, 127, p 351-360

    Article  Google Scholar 

  4. K.D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier, Proton Conducting Alkaline Earth Zirconates and Titanates for High Drain Electrochemical Applications, Solid State Ionics, 2001, 145, p 295-306

    Article  Google Scholar 

  5. K.D. Kreuer, Proton-Conducting Oxides, Annu. Rev. Mater. Res., 2003, 33, p 333-359

    Article  ADS  Google Scholar 

  6. W.S. Wang and A.V. Virkar, Ionic and Electron-Hole Conduction in BaZr0.93Y0.07O3-δ by 4-probe DC Measurements, J. Power Sources, 2005, 142, p 1-9

    Article  Google Scholar 

  7. F. Iguchi, T. Yamada, N. Sata, T. Tsurui, and H. Yugami, The Influence of Grain Structures on the Electrical Conductivity of a BaZr0.95Y0.05O3 Proton Conductor, Solid State Ionics, 2006, 177, p 2381-2384

    Article  Google Scholar 

  8. S. Tao and J.T.S. Irvine, Conductivity Studies of Dense Yttrium-doped BaZrO3 Sintered at 1325 °C, Solid State Chem., 2007, 180, p 3493-3503

    Article  ADS  Google Scholar 

  9. K. Nomura and H. Kageyama, Transport Properties of Ba(Zr0.8Y0.2)O3-δ Perovskite, Solid State Ionics, 2007, 178, p 661-665

    Article  Google Scholar 

  10. P. Babilo, T. Uda, and S.M. Haile, Processing of Yttrium-Doped Barium Zirconate for High Proton Conductivity, J. Mater. Res., 2007, 22, p 1322-1330

    Article  ADS  Google Scholar 

  11. S.B.C. Duval, P. Holtappels, U.F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, and T. Graule, Electrical Conductivity of the Proton Conductor BaZr0.9Y0.1O3-δ Obtained by High Temperature Annealing, Solid State Ionics, 2007, 178, p 1437-1441

    Article  Google Scholar 

  12. F. Iguchi, N. Sata, T. Tsurui, and H. Yugami, Microstructures and Grain Boundary Conductivity of BaZr1-xYxO3 (x = 0.05, 0.10, 0.15) Ceramics, Solid State Ionics, 2007, 178, p 691-695

    Article  Google Scholar 

  13. J.M. Serra and W.A. Meulenberg, Thin-Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate-Temperature Solid Oxide Fuel Cell Alternative, J. Am. Ceram. Soc., 2007, 90(7), p 2082-2089

    Article  Google Scholar 

  14. A.K. Azad, C. Savaniu, S. Tao, S. Duval, P. Holtappels, R.M. Ibberson, and J.T.S. Irvine, Structural Origins of the Differing Grain Conductivity Values in BaZr0.9Y0.1O2.95 and Indication of Novel Approach to Counter Defect Association, J. Mater. Chem., 2008, 18, p 3414-3418

    Article  Google Scholar 

  15. N. Ito, H. Matsumoto, Y. Kawasaki, S. Okada, and T. Ishihara, Introduction of In or Ga as Second Dopant to BaZr0.9Y0.1O3-δ to Achieve Better Sinterability, Solid State Ionics, 2008, 179, p 324-329

    Article  Google Scholar 

  16. A. D’Epifanio, E. Fabbri, E. DiBartolomeo, S. Licoccia, and E. Traversa, Design of BaZr0.8Y0.2O3-δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Fuel Cells, 2008, 8, p 69-76

    Article  Google Scholar 

  17. S. Higgins, N.M. Sammes, A. Smirnova, J.A. Kikner, and G. Tompsett, Yttrium-Doped Barium Zirconates as Ceramic Conductors in the Intermediate Temperature Range, J. Fuel Cell Sci. Technol., 2008, 5, p 011003

    Article  Google Scholar 

  18. S. Imashuku, T. Uda, Y. Nose, G. Taniguchi, Y. Ito, and Y. Awakura, Dependence of Dopant Cations on Microstructure and Proton Conductivity of Barium Zirconate, J. Electrochem. Soc., 2009, 156(1), p B1-B8

    Article  Google Scholar 

  19. S. Imashuku, T. Uda, and Y. Awakura, Sintering Properties of Trivalent Cation-Doped Barium Zirconate at 1600 °C, Electrochem. Solid-State Lett., 2007, 10(10), p B175-B178

    Article  Google Scholar 

  20. S. Imashuku, T. Uda, Y. Nose, K. Kishida, S. Harada, H. Inui, and Y. Awakura, Improvement of Grain-Boundary Conductivity of Trivalent Cation-Doped Barium Zirconate Sintered at 1600 °C by Co-doping Scandium and Yttrium, J. Electrochem. Soc., 2008, 155(6), p B581-B586

    Article  Google Scholar 

  21. S. Imashuku, T. Uda, Y. Nose, Y. Ito, and Y. Awakura, Effect of Isovalent Cation Substitution on Conductivity and Microstructure of Sintered Yttrium-Doped Barium Zirconate, J. Alloy. Compd., 2010, 409, p 672-676

    Article  Google Scholar 

  22. S. Imashuku, T. Uda, Y. Nose, and Y. Awakura, Fabrication and Electrical Characterization of 15% Yttrium-doped Barium Zirconate – Nitrate Freeze Drying Method Combined with Vacuum Heating, J. Electrochem. Soc., submitted

  23. A. Kojima, K. Tanaka, Y. Oyama, T. Higuchi, and S. Yamaguchi, Phase Equilibrium and Thermodynamic Stability in the BaO-ZrO2-YO1.5 System, The 31st Symposium on Solid State Ionics in Japan, 2005, p 100-101

  24. I. Barin, Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Tokyo, 1995

    Google Scholar 

  25. J.O.A. Paschoal, H. Kleykamp, and F. Thümmler, Phase Equilibria in the Pseudoquaternary BaO-UO2-ZrO2-MoO2 System, J. Nucl. Mater., 1987, 151, p 10-21

    Article  ADS  Google Scholar 

  26. R.S. Roth, Proceedings of User Aspects of Phase Equilibria, Petten, 1990, p 153-168

  27. J. Sestak, J. Kamarad, P. Holba, A. Triska, E. Pollert, and M. Nevriva, Charge-Distribution, Pressure and Composition Effects of CuOx Based Superconductors, Thermochim. Acta, 1991, 174, p 99-114

    Article  Google Scholar 

  28. W. Zhang and K. Osamura, Phase-Equilibrium in Y-Ba-O System, Mater. Trans., 1991, 32(11), p 1048-1052

    Google Scholar 

  29. I. Horsak, J. Sestak, and B. Stepanek, Simple Computer-Program Used for the Calculation of Stable and Metastable Phase-Boundary Lines for the Pseudobinary Edges in the BaO-CuOx-YO1.5 System, Thermochim. Acta, 1994, 234, p 233-243

    Article  Google Scholar 

  30. K.K. Srivastava, R.N. Patil, C.B. Choudhary, K.V.G.K. Gokhale, and E.C. Subbarao, Revised Phase-Diagram of System ZrO2-YO1.5, Trans. J. Br. Ceram. Soc., 1974, 73(5), p 85-91

    Google Scholar 

  31. V.S. Stubican, Phase Equilibria and Metastability in Some Zirconia Systems, Science and Technology of Zirconia III, S. Somiya, N. Yamamoto, and H. Yanagida, Ed., Sept 9-10, 1986, American Ceramic Society, Tokyo, 1988, p 71-82

  32. F.K. Fan, A.K. Kuznetsov, and E.K. Keler, Bull. Acad. Sci. USSR Div. Chem. Sci., 1963, 4, p 542-549

    Google Scholar 

  33. A. Rouanet, Contribution to Study of Zirconium-Oxides Systems of Lanthanides Close to Melting Point, Rev. Int. Ht.-Temp. Refract., 1971, 8(2), p 161-180

    Google Scholar 

  34. H.G. Scott, Phase Relationship in Zirconia-Yttria System, J. Mater. Sci., 1975, 10(9), p 1527-1535

    Article  ADS  Google Scholar 

  35. C. Pascual and P. Duran, Subsolidus Phase-Equilibria and Ordering in the System ZrO2-Y2O3, J. Am. Ceram. Soc., 1983, 66, p 23-27

    Article  Google Scholar 

  36. M. Yashima, M. Kakihana, and M. Yoshimura, Metastable-Stable Phase Diagrams in the Zirconia-Containing Systems Utilized in Solid-Oxide Fuel Cell Application, Solid State Ionics, 1996, 86-88, p 1131-1149

    Article  Google Scholar 

  37. R.D. Shannon, Revised Effective Ionic-radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 1976, 32, p 751-767

    Article  ADS  Google Scholar 

  38. Y. Oyama, X. Li, S. Miyoshi, and S. Yamaguchi, Stability and Transformation of Ba3Zr2O8.5 Phase, Proceedings of the 14th International Conference on Solid State Protonic Conductors, Sept 7-11, 2008 (Kyoto), p 120

Download references

Acknowledgments

This study was supported by Industrial Technology Research Grant Program in 2006 from New Energy and Industrial Technology Development Organization (NEDO) of Japan. A part of this study was also financially supported by Research Fellowship for Young Scientists from JSPS (202005). We are grateful to Professors Tetsu Ichitsubo and Eiichiro Matsubara for letting me use FE-SEM. I also would like to thank Professor Kyosuke Kishida and Mr. Kengo Goto for their help about the structure analysis of BZ(II) phase with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Imashuku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imashuku, S., Uda, T., Nose, Y. et al. To Journal of Phase Equilibria and Diffusion Phase Relationship of the BaO-ZrO2-YO1.5 System at 1500 and 1600 °C. J. Phase Equilib. Diffus. 31, 348–356 (2010). https://doi.org/10.1007/s11669-010-9736-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-010-9736-2

Keywords

Navigation