Skip to main content
Log in

Studying of Nanoribbon and Circular Poly (Vinyl Alcohol) Nanofibers Deposited by Electrospinning: Film Synthesis, Characterization Structure, and Resistance Corrosion

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The electrospinning technique was used to produce poly (vinyl alcohol) nanofibers. Effect of parameters such as voltage, feed rate, concentration of polymeric solution and space among the tip of the needle and the collector were studied. Field-emission scanning electron microscopy, Energy-dispersive x-ray spectroscopy and Fourier-transform infrared spectroscopy analysis were used for surface morphology and chemical composition of PVA nanofibers. By increasing the electrospinning distance, the morphology of PVA was changed from ribbon to circular shape. In addition, by increasing the feed rate of polymeric solution and polymer concentration, the thickness of the ribbon fibers and fiber diameter have increased, while the mean width of the fibers with the flat cross section has decreased and there is gradual change from round cross section to flat fibers. While with increasing the applied voltage, the width and diameter of the fibers approximately decreased. Contact angle measurement was used for investigation of the wetting and hydrophobicity of PVA nanofibers before and after cross-linking treatment. The corrosion performance of PVA in solutions in corrosive medium as inhibitors, electrospun fibers on the substrate and thermal cross-linked fibers was investigated by Electrochemical impedance spectroscopy technique. Cross-linked PVA fibers showed better protection than other cases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

taken from the surface of poly (vinyl alcohol) electrospun fibers

Fig. 11
Fig. 12
Fig. 13

taken from the electrospun PVA fibers on the surface of the steel substrate

Similar content being viewed by others

References

  1. K.T. Nguyen, S. Navaratnam, P. Mendis, K. Zhang, J. Barnett, H. Wang, Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Compos. Part B- Eng. 187, 107815 (2020). (in English)

    Article  CAS  Google Scholar 

  2. S. Kalia, K. Thakur, A. Celli, M.A. Kiechel, C.L. Schauer, Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J. Env. Chem. Eng. 1, 97–112 (2013). (in English)

    Article  CAS  Google Scholar 

  3. A. Lund, N.M. Van der Velden, N.K. Persson, M.M. Hamedi, C. Müller, Electrically conducting fibres for e-textiles: an open playground for conjugated polymers and carbon nanomaterials. Mat. Sci. Eng. 1, 126 (2018). (in English)

    Google Scholar 

  4. R.C. Paul, B. Ramachandran, G. Sushma, K.A. Harshavardhan, I. Rohith, An empirical research on areca fiber polymer composite for automotive components in modern industry. Mater. Today Proc. Mat. Today Proc. 33, 4493–4497 (2020). (in English)

    Article  CAS  Google Scholar 

  5. Z. Guo, A.A. Poot, D.W. Grijpma, Advanced polymer-based composites and structures for biomedical applications. Eur. Polym. J. 149, 110388 (2021). (in English)

    Article  CAS  Google Scholar 

  6. M. Motavalli, C. Czaderski, A. Schumacher, D. Gsell, Fibre reinforced polymer composite materials for building and construction. Text. Polym. Compos. Build. 69, 69–128 (2010). (in English)

    Article  Google Scholar 

  7. B. Deepen, P. Rajesh, R.K. Dwivedi, Advanced application of polymer based biomaterials. Mat. Tod. Proc. 4, 3534–3541 (2017). (in English)

    Article  Google Scholar 

  8. D. Jianxun, Z. Jin, L. Jiannan, L. Di, X. Chunsheng, X. Haihua, Y. Huanghao, Z. Xiuli, Ch. Xuesi, Electrospun polymer biomaterials, progress in polymer science. Prog. Polym. Sci. 90, 1–34 (2019). (in English)

    Article  CAS  Google Scholar 

  9. R.M. Soares, N.M. Siqueira, M.P. Prabhakaram, S. Ramakrishna, Review electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mat. Sci. Eng. C. 92, 969–982 (2018). (in English)

    Article  CAS  Google Scholar 

  10. S.S.A. Kumar, S. Bashir, K. Ramesh, S. Ramesh, Review New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: the relevance of the Graphene/Polymer barrier coatings. Prog. Org. Coat. 154, 106215 (2021). (in English)

    Article  CAS  Google Scholar 

  11. C.I. Idumah, C.M. Obele, E.O. Emmanuel, A. Hassan, N. Azikiwe, Recently emerging nanotechnological advancements in polymer nanocomposite coatings for anti-corrosion, anti-fouling and self-healing. Surf. Inter. 21, 100734n (2020). (in English)

    Google Scholar 

  12. G. Cui, C. Zhang, A. Wang, X. Zhou, X. Xing, J. Liu, Z. Li, Q. Chen, Q. Lu, Research progress on self-healing polymer/graphene anticorrosion coatings. Prog. Org. Coat. 155, 106231 (2021). (in English)

    Article  CAS  Google Scholar 

  13. A. Yabuki, S. Tanabe, I.W. Fathona, Self-healing polymer coating with the microfibers of superabsorbent polymers provides corrosion inhibition in carbon steel. Surf. Coat. Technol. 341, 71–77 (2018). (in English)

    Article  CAS  Google Scholar 

  14. Z. Zhang, G. Jiang, Y. Wu, F. Kong, J. Huang, Surface functional modification of ultrahigh molecular weight polyethylene fiber by atom transfer radical polymerization. Appl. Surf. Sci. 427, 410–415 (2018). (in English)

    Article  CAS  Google Scholar 

  15. N. Shukla, G.L. Devnani, A review on mechanical properties of hybrid natural fiber polymer composites. Mater. Today. Proc. 45, 4702–4705 (2021). (in English)

    Article  CAS  Google Scholar 

  16. F. Wang, X. Fang, Z. Zhang, Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage. Sol. Energy Mater. Sol. Cel. 176, p381-390 (2018). (in English)

    Article  CAS  Google Scholar 

  17. X.X. Wang, G.F. Yu, J. Zhang, M. Yu, S. Ramakrishna, Y.Z. Long, Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mat. Sci. 115, 100704 (2021). (in English)

    Article  CAS  Google Scholar 

  18. H. Vahabi, H. Wu, M.R. Saeb, J.H. Koo, S. Ramakrishna, Review electrospinning for developing flame retardant polymer materials: current status and future perspectives. Polymer. 217, 123466 (2021). (in English)

    Article  CAS  Google Scholar 

  19. H.U. Shin, Y. Li, A. Paynter, K. Nartetamrongsutt, G.G. Chase, Vertical rod method for electrospinning polymer fibers. Polymer. 65, 26–33 (2015). (in English)

    Article  CAS  Google Scholar 

  20. I. Yuya, S. Heisuke, M. Hideyuki, A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers. Mat. Let. 62, 3370–3372 (2008). (in English)

    Article  CAS  Google Scholar 

  21. P.K. Szewczyk, U. Stachewicz, Historical Perspective The impact of relative humidity on electrospun polymer fibers: from structural changes to fiber morphology. Adv. Coll. Inter. Sci. 286, 102315 (2020). (in English)

    Article  CAS  Google Scholar 

  22. F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y.X. Ma, S. Wang, Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 25, 1891–1900 (2004). (in English)

    Article  CAS  Google Scholar 

  23. M. Sengor, A. Ozgun, O. Gunduz, S. Altintas, Aqueous electrospun core/shell nanofibers of PVA/microbial transglutaminase cross-linked gelatin composite scaffolds. Mater. Lett. 263, 127233 (2020). (in English)

    Article  CAS  Google Scholar 

  24. T. Baykara, G. Taylan, Coaxial electrospinning of PVA/Nigella seed oil nanofibers: processing and morphological characterization. Mater. Sci. Eng. B. 265, 115012 (2021). (in English)

    Article  CAS  Google Scholar 

  25. D.T. Haynie, D.B. Khadka, G. Marcus, N.K. Le, Self-organization kinetics in polypeptide electrospun fibers. Coll. Sur. A. 457, 73–81 (2014). (in English)

    Article  CAS  Google Scholar 

  26. T. Uyar, F. Besenbacher, Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer. 49, 5336–5343 (2008). (in English)

    Article  CAS  Google Scholar 

  27. L.F. de Paula Santos, R. Alderliesten, W. Kok, B. Ribeiro, J.B. de Oliveira, M.L. Costa, E.C. Botelho, The influence of carbon nanotube buckypaper/poly (ether imide) mats on the thermal properties of poly (ether imide) and poly (aryl ether ketone)/carbon fiber laminates. Diam. Relat. Mater. 116, 108421 (2021). (in English)

    Article  CAS  Google Scholar 

  28. F. Topuz, T. Uyar, Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Mat. Sci. Eng. C. 80, 371–378 (2017). (in English)

    Article  CAS  Google Scholar 

  29. S. Yadav, M.D. Kok, A. Forner-Cuenca, K.M. Tenny, Y.M. Chiang, F.R. Brushett, R. Jervis, P.R. Shearing, D. Brett, E.P. Roberts, J.T. Gostick, Fabrication of high surface area ribbon electrodes for use in redox flow batteries via coaxial electrospinning. J. Energy Storage. 33, 102079 (2021). (in English)

    Article  Google Scholar 

  30. M. Ristić, M. Marciuš, Ž Petrović, M. Ivanda, S. Musić, Formation and characterization of ribbon-like RuO2/Ru fibers. Mater. Lett. 156, 142 (2015). (in English)

    Article  CAS  Google Scholar 

  31. C.J. Luo, M. Nangrejo, M. Edirisinghe, A novel method of selecting solvents for polymer electrospinning. Polymer. 51, 1654–1662 (2010). (in English)

    Article  CAS  Google Scholar 

  32. P.K. Bhattacharjee, G.C. Rutledge, Electrospinning and polymer nanofibers: process fundamentals. Compr. Biomater. 5, 200–216 (2017). (in English)

    Article  CAS  Google Scholar 

  33. A. Gupta, P. Ayithapu, R. Singhal, Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation. Chem. Eng. Sci. 235, 116463 (2021). (in English)

    Article  CAS  Google Scholar 

  34. K. Santiago-Castillo, D. Del Angel-López, A.M. Torres-Huerta, M.A. Domínguez-Crespo, D. Palma-Ramírez, H. Willcock, S.B. Brachetti-Sibaja, structure and mechanical properties of highly dispersed in situ ZnO:CS nanoparticles into PVA electrospun fibers. J. Mater. Res. Technol. 11, 929–945 (2021). (in English)

    Article  CAS  Google Scholar 

  35. S. Domaschke, A. Morel, R. Kaufmann, J. Hofmann, R.M. Rossi, E. Mazza, G. Fortunato, A.E. Ehret, Predicting the macroscopic response of electrospun membranes based on microstructure and single fibre properties. J. Mech. Behav. Bio. Mater. 104, 103634 (2020). (in English)

    Article  CAS  Google Scholar 

  36. N. Maftoonazad, M. Shahamirian, D. John, H. Ramaswamy, Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Mat. Sci. Eng. C. 94, 402 (2019). (in English)

    Article  CAS  Google Scholar 

  37. K. Paipitak, T. Pornpra, P. Mongkontalang, W. Techitdheer, W. Pecharapa, Characterization of PVA-chitosan nanofibers prepared by electrospinning. Proc. Eng. 8, 101–105 (2011). (in English)

    Article  CAS  Google Scholar 

  38. S. Sheik, S. Sheik, R. Nairy, G.K. Nagaraja, A. Prabhu, P.D. Rekha, K. Prashantha, Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. Inter. J. Biol. Macro. 116, 45–53 (2018). (in English)

    Article  CAS  Google Scholar 

  39. S. Zhang, Q. Shi, C. Christodoulatos, G. Korfiatis, X. Meng, Adsorptive filtration of lead by electrospun PVA/PAA nanofiber membranes in a fixed-bed column. Chem. Eng. J. 370, 1262–1273 (2019). (in English)

    Article  CAS  Google Scholar 

  40. B. Unal, E.E. Yalcinkaya, D.O. Demirkol, S. Timur, An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite. Appl. Surf. Sci. 444, 542–551 (2018). (in English)

    Article  CAS  Google Scholar 

  41. G. Prahasti, A. Zulfi, K. Khairurrijal, Synthesis of fiber membranes from polyvinyl alcohol (PVA)/shell extract of melinjo (SEM) using electrospinning method. Mat. Tod. Proc. 44, 3400–3402 (2021). (in English)

    Article  CAS  Google Scholar 

  42. E.S.M. Sherif, M. Es-saheb, A. El-Zatahry, E. Kenawyand, A.S. Alkaraki, Coating electrospun polyvinyl alcohol and polyvinyl chloride fibers as corrosion passivation applications. Int. J. Electrochem. Sci. 7, 6154–6167 (2012). (in English)

    CAS  Google Scholar 

  43. K.T. Arul, E. Manikandan, J.R. Ramya, K. Indira, U.K. Mudali, M. Henini, K. Asokan, C.L. Dong, S.N. Kalkura, Enhanced anticorrosion properties of nitrogen ions modified polyvinyl alcohol/Mg-Ag ions co-incorporated calcium phosphate coatings. Mater. Chem. Phys. 261, 124182 (2021). (in English)

    Article  CAS  Google Scholar 

  44. A.A.F. Sabirneeza, S. Subhashini, Poly (vinyl alcohol–proline) as corrosion Inhibitor for mild steel in 1M hydrochloric acid. Int. J. Ind. Chem. 5, p111-120 (2014). (in English)

    Article  Google Scholar 

  45. J. Zhang, Y. Huang, H. Wu, S.H. Geng, F. Wang, Corrosion protection properties of an environmentally friendly polyvinyl alcohol coating reinforced by a heating treatment and lignin nanocellulose. Prog. Org. Coat. 155, 106224 (2021). (in English)

    Article  CAS  Google Scholar 

  46. B. Ramezanzadeh, H. Vakili, R. Amini, The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate. Appl. Surf. Sci. 327, 174–181 (2015). (in English)

    Article  CAS  Google Scholar 

  47. Z. Wang, F. Yan, H. Pei, J. Li, Z. Cui, B. He, Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration. Carbohydr. Polym. 198, 241–248 (2018). (in English)

    Article  CAS  Google Scholar 

  48. G.W. de Kort, N. Leoné, E. Stellamanns, D. Auhl, C.H.R.M. Wilsens, S. Rastogi, Effect of shear rate on the orientation and relaxation of a vanillic acid based liquid crystalline polymer. Polymers. 10, 935 (2018). https://doi.org/10.3390/polym10090935 (in English)

    Article  CAS  Google Scholar 

  49. S. Zhang, C. Campagne, F. Salaün, Influence of solvent selection in the electrospraying process of polycaprolactone. Appl. Sci. 9, 402 (2019). https://doi.org/10.3390/app9030402 (in English)

    Article  CAS  Google Scholar 

  50. H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C. 28, 539–548 (2008). (in English)

    Article  CAS  Google Scholar 

  51. P.S. Thomas, J.P. Guerbois, G.F. Russell, B.J. Briscoe, FTIR Study of the thermal degradation of Poly(vinyl Alcohol). J. Therm. Anal. Calorim. 64, 501–508 (2001). (in English)

    Article  CAS  Google Scholar 

  52. Y. Liu, L. Dong, J. Fan, R. Wang, J.Y. Yu, Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning. J. Appl. Poly. Sci. 120, 592–598 (2011). (in English)

    Article  CAS  Google Scholar 

  53. L.A. Can-Herrera, A.I. Oliva, M.A.A. Dzul-Cervantes, O.F. Pacheco-Salazar, J.M. Cervantes-Uc, Morphological and mechanical properties of electrospun polycaprolactone scaffolds: effect of applied voltage. Polymers. 13, 662 (2021). (in English)

    Article  CAS  Google Scholar 

  54. L. Sharifi, F. Assa, H. Ajamein, S.H. Mirhosseini, Effect of voltage and distance on synthesis of boehmite nanofibers with PVP by the electrospinning method. Inter. J. Adv. Sci. Technol. 98, 63–74 (2017). (in English)

    Article  Google Scholar 

  55. T. Mazoochi, M. Hamadanian, M. Ahmadi, V. Jabbari, Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. Int. J. Ind. Chem. 3, 2 (2012). (in English)

    Article  Google Scholar 

  56. S. Bao, H. Liu, H. Liang, C. Li, J. Bai, Electrospinned silk-ribbon-like carbon-doped TiO2 ultrathin nanosheets for enhanced visible-light photocatalytic activity, colloids and surfaces a: physicochemical and engineering aspects. Colloids Surf. A. Physicochem. Eng. Asp. 616, p126289 (2021). (in English)

    Article  CAS  Google Scholar 

  57. Q. Du, D.R. Harding, H. Yang, Helical peanut-shaped poly (vinyl pyrrolidone) ribbons generated by electrospinning. Polymer. 54(25), 6752–6759 (2013). (in English)

    Article  CAS  Google Scholar 

  58. M.M. Sabzehmeidani, H. Karimi, M. Ghaedi, Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning. Polyhedron. 170, 160–171 (2019). (in English)

    Article  CAS  Google Scholar 

  59. S. Jin, B. Xin, Y. Zheng, S. Liu, Effect of electric field on the directly electrospun nanofiber yarns: Simulation and experimental study. Fiber. Polym. 19(1), p116-124 (2018). (in English)

    Article  CAS  Google Scholar 

  60. S. Zargham, S. Bazgir, A. Tavakoli, A.S. Rashidi, R. Damerchely, The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J. Eng. Fibers Fabr. 7, 4 (2012). (in English)

    Google Scholar 

  61. M. Al-Qadhi, N. Merah, A. Matin, N. Abu-Dheir, M. Khaled, K. Youcef-Toumi, Preparation of superhydrophobic and self-cleaning polysulfone non-wovens by electrospinning: influence of process parameters on morphology and hydrophobicity. J. Polym. Res. 22, 207 (2015). (in English)

    Article  CAS  Google Scholar 

  62. D. Fallahi, M. Rafizadeh, N. Mohammadi, B. Vahidi, Effects of feed rate and solution conductivity on jet current and fiber diameter in electrospinning of polyacrylonitrile solutions. e-Polymers 104 (2009). (in English)

  63. Z.M. Huang, Y.Z. Zhang, M. Kotaki, Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comput. Sci. Tech. 63(15), 2223–2253 (2003). (in English)

    Article  CAS  Google Scholar 

  64. A. Haider, S. Haider, I.K. Kang, Review a comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11, 1165–1188 (2018). (in English)

    Article  CAS  Google Scholar 

  65. V. Pillay, C. Dott, Y.E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L.C. du Toit, V. M. Ndesendo, A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nano. 22 (2013). (in English)

  66. F.K. Mwiiri, R. Daniels, Influence of PVA molecular weight and concentration on electrospinnability of birch bark extract-loaded nanofibrous scaffolds intended for enhanced wound healing. Molecules. 25, 4799 (2020). (in English)

    Article  CAS  Google Scholar 

  67. C. Wang, J. Wang, L. Zeng, Z. Qiao, X. Liu, H. Liu, J. Zhang, J. Ding, Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules. 24, 834 (2019). (in English)

    Article  CAS  Google Scholar 

  68. R.M. Nezarati, M.B. Eifert, E. Cosgriff-Hernandez, Effects of humidity and solutionviscosity on electrospun fiber morphology. TISS. ENG. Part. C. 19, 810 (2013). https://doi.org/10.1089/ten.tec.2012.0671 (in English)

    Article  CAS  Google Scholar 

  69. S. Gadkari, Influence of polymer relaxation time on the electrospinning process: numerical investigation. Polymers. 9, 501 (2017). https://doi.org/10.3390/polym9100501 (in English)

    Article  CAS  Google Scholar 

  70. D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer. 49(10), 2387–2425 (2008). (in English)

    Article  CAS  Google Scholar 

  71. K. Garg, G.L. Bowlin, Electrospinning jets and nanofibrous structures. Biomicrofluidics. 5, 013403 (2011). (in English)

    Article  CAS  Google Scholar 

  72. S. Huan, G. Liu, G. Han, W. Cheng, Z. Fu, Q. Wu, Q. Wang, Effect of experimental parameters on morphological. Mech. Hydrophobic Prop. Electrospun Polystyr. Fibers Mater. 8, 2718–2734 (2015). (in English)

    CAS  Google Scholar 

  73. E. Rynkowska, K. Fatyeyeva, S. Marais, J. Kujawa, W. Kujawski, Chemically and thermally crosslinked PVA-based membranes: effect on swelling and transport behavior. Polymers. 11, 1799 (2019). https://doi.org/10.3390/polym11111799 (in English)

    Article  CAS  Google Scholar 

  74. M.S. Peresin, A.H. Vesterinen, Y. Habibi, L.S. Johansson, J.J. Pawlak, A.A. Nevzorov, O.J. Rojas, Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties. J. Appl. Polym. Sci. 131, 40334 (2014). (in English)

    Article  CAS  Google Scholar 

  75. K. Alaoui, Y. ElKacimi, M. Galai, R. Touir, K. Dahmani, A. Harfi, M. EbnTouhami, Anti-corrosive properties of Polyvinyl-Alcohol for carbon steel in Hydrochloric acid media: Electrochemical and Thermodynamic investigation. J. Mater. Environ. Sci. 7, 2389–2403 (2016). (in English)

    CAS  Google Scholar 

  76. P.J. Rivero, D.M. Redin, R.J. Rodríguez, A powerful tool to improve the corrosion resistance of metallic surfaces using nanofibrous coatings. Metals. 3, 350 (2020). https://doi.org/10.3390/met10030350 (in English)

    Article  CAS  Google Scholar 

  77. W. Nguyen, J.F. Duncan, T.M. Devine, C.P. Ostertag, Electrochemical polarization and impedance of reinforced concrete and hybrid fiber-reinforced concrete under cracked matrix conditions. Elect. Act. 271, 319–336 (2018). (in English)

    Article  CAS  Google Scholar 

  78. S.M. Madani, M. Ehteshamzadeh, H.H. Rafsanjani, S.S. Mansoori, S.M. Madani, M. Ehteshamzadeh, H.H. Rafsanjani, S.S. Mansoori, The effect of calcination on the corrosion performance of TiO2 sol–gel coatings doped with benzotriazole on steel CK45. Mater. Corros. 61, 318 (2010). (in English)

    Article  CAS  Google Scholar 

  79. S.M. Madani, M. Ehteshamzadeh, H.H. Rafsanjani, Investigation of the microstructure and corrosion performance of a nanostructured titania-containing hybrid silicate film on mild steel. Thin Solid Films. 519(1), 145–150 (2010). (in English)

    Article  CAS  Google Scholar 

  80. S.M. Madani, M. Ehteshamzadeh, H.H. Rafsanjani, Surface Pre-treatment Coating Film and Process for Metallic Substrates. US patent: US8273411B2, (2012). (in English)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sangpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani, S.M., Sangpour, P., Vaezi, M.R. et al. Studying of Nanoribbon and Circular Poly (Vinyl Alcohol) Nanofibers Deposited by Electrospinning: Film Synthesis, Characterization Structure, and Resistance Corrosion. J Fail. Anal. and Preven. 22, 1196–1214 (2022). https://doi.org/10.1007/s11668-022-01408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01408-7

Keywords

Navigation