Skip to main content
Log in

Exfoliation Corrosion Impact on Microstructure, Mechanical Properties, and Fatigue Crack Growth of Aeronautical Aluminum Alloy

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In this paper, quantitative investigation of localized corrosion, in particular, exfoliating corrosion (EXCO) of aluminum alloys 2024 T3 and 7075 T6, is carried out. The mechanism of EXCO focusing on the effects of the combination of materials/environment/mechanical stress was also considered. An optical microscope (MO) and a scanning electron microscope coupled with a energy-dispersive spectroscope (EDX) were used to examine the microstructural stat. Tensile tests were conducted on plate specimens to discern the degradation of mechanical properties after the corrosion attack. Fatigue tests were conducted on compact tension specimens to correlate the influence of corrosion/microstructure coupling on the fatigue behavior of different aluminum alloys. The crack growth rate of the different materials for pre-corroded specimens was affected according to the microstructure of these two alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M.J. Robinson, N.C. Jackson, The influence of grain structure and intergranularcorrosion rate on exfoliation and stress corrosion crackingof high strength Al–Cu–Mg alloys. Corros. Sci. 41, 1013–1028 (1999)

    Article  CAS  Google Scholar 

  2. T.J. Summerson, D.O. Sprowls, Corrosion behavior of aluminum alloys. in International Conference in Celebration of the Centennial of the Hall-Heroult Process. (University of Virginia, Charlottesville,Virginia, 1986)

  3. YajunChen et Al, Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions. Int. J. Fatigue 98, 269–278 (2017)

    Article  Google Scholar 

  4. E.A.G. Liddiard, J.A. Whittaker, H.K. Farmery, The exfoliation corrosion of aluminium alloys. J. Inst. Met., 89, 377–384 (1960–1961)

  5. J. Zahavi, J. Yahalom, Closure to “discussion of ‘exfoliation corrosion of AlMgSi alloys in water. J. Electrochem. Soc. 129(6), 1181–1186 (1982)

    Article  CAS  Google Scholar 

  6. P.C. Conor, A.D. James, R.N. Collier, Evaluation of Exfoliation Corrosion Damage to 7075-T6 Aluminum Alloy Aircraft Structural Components (Materials and Structures Group, Defense Technology Agency, Auckland, 2004)

    Google Scholar 

  7. D. Sprowls, J. Walsh, M. Shumaker, Simplified exfoliation testing of aluminum alloys, in STP516-EB Localized Corrosion, ed. by M. Henthorne (ASTM International, West Conshohocken, PA, 1972), pp. 38–65. https://doi.org/10.1520/STP35415S

  8. M.J. Robinson, N.C. Jackson, Exfoliation corrosion of high strength Al–Cu–Mg alloys: effect of grain structure. Br. Corros. J. 34(1), 45–49 (1999)

    Article  CAS  Google Scholar 

  9. M.J. Robinson, Mathematical modelling of exfoliation corrosion in high strength aluminium alloys. Corros. Sci. 22(8), 775–790 (1982)

    Article  CAS  Google Scholar 

  10. D.J. Kelly, M.J. Robinson, Influence of heat treatment and grain shape on exfoliation corrosion of Al–Li alloy 8090. Corrosion 49(10), 787–795 (1993)

    Article  CAS  Google Scholar 

  11. ASTM G34-01, Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test) (ASTM International, West Conshohocken, PA, 2001). https://www.astm.org

  12. ASTM G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (ASTM International, West Conshohocken, PA, 2003). https://www.astm.org

  13. ASTM E8-04, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, PA, 2004). https://www.astm.org

  14. ASTM Standard E647-00, Standard Test Method for Measurement of Fatigue Crack Growth, Part 03.01, Metals Mechanical Testing Elevated and Low-Temperature Tests Metallographic

  15. F. Andreatta, H. Terryn, J.H.W. de Wit, Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075-T6. Corros. Sci. 45, 1733–1746 (2003)

    Article  CAS  Google Scholar 

  16. R.G. Buchheit, R. Grant, P. Hlava, B. Mckenzie, G. Zender, Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J. Electrochem. Soc. 144, 2621–2628 (1997)

    Article  CAS  Google Scholar 

  17. A. Boag, R.J. Taylorb, T.H. Musterc, N. Goodmanb, D. McCullocha, C. Ryand, B. Route, Stable pit formation on AA2024-T3 in a NaCl environement. Corros. Sci. 52(1), 90–103 (2009)

    Article  Google Scholar 

  18. V. Guillaumin, Etude comparative de la sensibilité à la corrosion localisée des alliages d’aluminium 2024 et 6056. Thèse de doctorat, Institut National Polytechnique de Toulouse (1999)

  19. D. Desjardins, R. Oltra, Corrosion sous contrainte: phénoménologie et mécanismes: [école d'automne], Bombannes, 1990; éd. scientifiques, D. Desjardins et R. Oltra. Les Ulis, Les Éd. de Physique, 1990

  20. M. Jedrychowski, J. Tarasiuk, B. Bacroix, S. Wronski, Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium. A new approach in grain boundary analysis. J. Appl. Crystallogr. 46, 483–492 (2013)

    Article  CAS  Google Scholar 

  21. M. Posada, L.E. Murr, C.S. Niou, D. Roberson, D. Little, R. Arrowood, D. George, Exfoliation and related microstructures in 2024 aluminum body skins on aging aircraft. Mater. Charact. 38, 259 (1997)

    Article  CAS  Google Scholar 

  22. F. Cao, Z. Zhang, J. Su, J. Zhang, Electrochemical impedance spectroscopy analysis on aluminum alloys in EXCO solution. Mater. Corros. 56(5), 318–324 (2005)

    Article  CAS  Google Scholar 

  23. H. Kamoutsi, G. Haidemenopoulos, V. Bontozoglou, S. Pantelakis, Corrosion-induced hydrogen embrittlement in aluminum alloy 2024. Corros. Sci. 48(5), 1209–1224 (2006)

    Article  CAS  Google Scholar 

  24. S. Pantelakis, P. Daglaras, C. Apostolopoulos, Tensile and energy density properties of 2024, 6013, 8090 and 2091 aircraft aluminum alloy after corrosion exposure. Theor. Appl. Fract. Mech. 33(2), 117–134 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessamad Brahami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahami, A., Fajoui, J. & Bouchouicha, B. Exfoliation Corrosion Impact on Microstructure, Mechanical Properties, and Fatigue Crack Growth of Aeronautical Aluminum Alloy. J Fail. Anal. and Preven. 20, 197–207 (2020). https://doi.org/10.1007/s11668-020-00815-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00815-y

Keywords

Navigation