Skip to main content
Log in

Potentiodynamic Polarization Behavior and Pitting Corrosion Analysis of 2101 Duplex and 301 Austenitic Stainless Steel in Sulfuric Acid Concentrations

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The corrosion behavior of 2101 duplex and 301 austenitic stainless steel in the presence of sulfate (SO4 2−) anion concentrations was investigated through polarization techniques, weight loss and optical microscopy analysis. The corrosion rates of the steels were comparable after 3M H2SO4. Results confirm that the duplex steel displayed a higher resistance to pitting corrosion than the austenitic steel. Experimental observation shows that its pitting potential depends on the concentration of the SO4 2− ions in the acid solution due to adsorption of anions at the metal-film interface. The duplex steel underwent stable pitting at relatively higher potentials and significantly higher corrosion current than the austenitic steel. The duplex steel exhibited lower corrosion potential values thus less likely to polarize in the acid solution. Solution concentration had a limited influence on the polarization behavior of the austenitic steel and hence its reaction to SO4 2− ion penetration from analysis of the pitting potentials and observation of its narrower polarization scans compared to the duplex steel which showed wide scatter over the potential domain with changes in concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.E. Williams, M.R. Kilburn, J. Cliff, G.I.N. Waterhouse, Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion. Corros. Sci. 52, 3702–3716 (2010)

    Article  Google Scholar 

  2. D.A. Jones, Principles and Prevention of Corrosion (Macmillan Publishing Company, New York, 1992), p. 208

    Google Scholar 

  3. R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control (Wiley, New Jersey, 2008)

    Book  Google Scholar 

  4. P.C. Pistorius, G.T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability. Philos. Trans.: Phys. Sci. Eng. 341, 531–559 (1992)

    Google Scholar 

  5. P.C. Pistorius, G.T. Burstein, Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate. Corros. Sci. 33, 1885–1897 (1992)

    Article  Google Scholar 

  6. P. Ernst, N.J. Laycock, M.H. Moayed, R.C. Newman, The mechanism of lacy cover formation in pitting. Corros. Sci. 39, 1133–1136 (1997)

    Article  Google Scholar 

  7. N.J. Laycock, R.C. Newman, Temperature dependence of pitting potentials for austenitic stainless steels above their critical pitting temperature. Corros. Sci. 40, 887–902 (1998)

    Article  Google Scholar 

  8. J. Soltis, Passivity breakdown, pit initiation and propagation of pits in metallic materials—review. Corros. Sci. 90, 5–22 (2015)

    Article  Google Scholar 

  9. ASTM G1 - 03(2011) Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. http://www.astm.org/Standards/G1. Retrieved 30 May 2016

  10. ASTM G59 - 97(2014) Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. http://www.astm.org/Standards/G31 Retrieved 30 May 2016

  11. ASTM G102 - 89(2015)e1 Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. http://www.astm.org/Standards/G31. Retrieved 30 May 2016

  12. Y. Choi, S. Nesic, S. Ling, Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim. Acta 56, 1752–1760 (2011)

    Article  Google Scholar 

  13. ASTM NACE/ASTMG31 - 12a (2012) Standard Guide for Laboratory Immersion Corrosion Testing of Metals. http://www.astm.org/Standards/G31. Retrieved 05 May 2016

  14. P. Venkatesan, B. Anand, P. Matheswaran, Influence of formazan derivatives on corrosion inhibition of mild steel in hydrochloric acid medium. Eur. J. Chem. 6(S1), S438–S444 (2009)

    Google Scholar 

  15. W.B. Jensen, The Lewis Acid-Base Concepts (Wiley, New York, 1980), pp. 112–336

    Google Scholar 

  16. K. Fushimi, M. Seo, Initiation of a local breakdown of passive film on iron due to chloride ions generated by a liquid-phase ion-gun for local breakdown. J. Electrochem. Soc. 148(11), B456–B459 (2001)

    Article  Google Scholar 

  17. K. Fushimi, K. Azumi, M. Seo, Use of a liquid-phase ion-gun for local breakdown of the passive film on iron. J. Electrochem. Soc. 147(2), 552–557 (2000)

    Article  Google Scholar 

  18. K.E. Heusler, L. Fisher, Kinetics of pit initiation at passive iron. Mater. Corros. 27(8), 551–556 (1976)

    Article  Google Scholar 

  19. G.L. Song, Transpassivation of Fe-Cr-Ni stainless steels. Corros. Sci. 47, 1953–1987 (2005)

    Article  Google Scholar 

  20. J. Kruger, Uhlig’s Corrosion Handbook R. Winstone Revie (Ed.) (Wiley, New Jersey, 2011)

    Google Scholar 

  21. M. Bojinov, G. Fabricius, T. Laitinen, T. Saario, Transpassivity mechanism of iron-chromium-molybdenum alloys studied by AC impedance, DC resistance and RRDE measurements. Electrochim. Acta 44, 4331–4343 (1999)

    Article  Google Scholar 

  22. A. Sara, Y. Yongsun, C. Pyungyeon, J. Changheui, B. Philip, Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution. Corros. Sci. 111, 720–727 (2016)

    Article  Google Scholar 

  23. G.S. Frankel, Pitting corrosion of metals: a review of the critical factors. J. Electrochem. Soc. 145, 2186–2198 (1998)

    Article  Google Scholar 

  24. H. Bohni, Breakdown of passivity and localized corrosion process. Langmuir 3(6), 924–930 (1987)

    Article  Google Scholar 

  25. R.T. Loto, Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media. J. Mater. Environ. Sci. 4(4), 448–459 (2013)

    Google Scholar 

  26. H.H. Uhlig, Adsorbed and reaction-product films on metals. J. Electrochem. Soc. 97, 215C–220C (1950)

    Article  Google Scholar 

  27. R.T. Loto, Pitting corrosion evaluation and inhibition of stainless steels: a review. J. Mater. Environ. Sci. 6(10), 2750–2762 (2015)

    Google Scholar 

  28. T.P. Hoar, D.C. Mears, G.P. Rothwell, The relationships between anodic passivity, brightening and pitting. Corros. Sci. 5, 279–289 (1965)

    Article  Google Scholar 

  29. G.S. Frankel, Pitting corrosion of metals: a review of the critical factors. J. Electrochem. Soc. 145(6), 2186–2198 (1998)

    Article  Google Scholar 

  30. N. Sato, A theory for breakdown of anodic oxide films on metals. Electrochim. Acta 16, 1683–1692 (1971)

    Article  Google Scholar 

  31. N. Sato, K. Kudo, T. Noda, The anodic oxide film on iron in neutral solution. Electrochim. Acta 16, 1909–1921 (1971)

    Article  Google Scholar 

  32. W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, K. Edström, Full depth profile of passive films on 316L stainless steel based on high resolution HAXPES in combination with ARXPS. Appl. Surf. Sci. 258(15), 5790–5797 (2012)

    Article  Google Scholar 

  33. K. Ahmad, Principles of Corrosion Engineering and Corrosion Control (Butterworth-Heinemann, Oxford, 2006)

    Google Scholar 

  34. J. Dong, J. Zhou, An investigation of pitting initiation mechanism of 1Cr12Ni2W1Mo1 V steel after induction hardening. J. Mater. Sci. 35, 2653–2657 (2000)

    Article  Google Scholar 

  35. H.H. Strehblow, P. Marcus, J. Oudar (eds.), Corrosion Mechanisms in Theory and Practice (Marcel Dekker, New York, 1995)

    Google Scholar 

  36. A. Bentour, S. Diamond, N.S. Berke, Steel Corrosion in Concrete (Chapman & Hall, London, 1997)

    Google Scholar 

  37. A.R. Brooks, C.R. Clayton, K. Doss, Y.C. Lu, On the role of Cr in the passivity of stainless steel. J. Electr. Sci. 133, 2459–2464 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Tolulope Loto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loto, R.T., Loto, C.A. Potentiodynamic Polarization Behavior and Pitting Corrosion Analysis of 2101 Duplex and 301 Austenitic Stainless Steel in Sulfuric Acid Concentrations. J Fail. Anal. and Preven. 17, 672–679 (2017). https://doi.org/10.1007/s11668-017-0291-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-017-0291-6

Keywords

Navigation