Skip to main content
Log in

Studying the Effect of Different Environmental Conditions on the Tensile Strength of RGO Reinforced Adhesively Bonded Butt Joints

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Nanoscale reinforcements are increasingly being used to improve mechanical, electrical and thermal behavior of polymers. In this study, the effects of reduced graphene oxide (RGO) epoxy filler on the tensile strength of adhesively bonded butt joints were investigated in a variety of environments. Firstly, dry butt joints with different RGO contents were tested using a uni-axial tensile test machine and it was observed that the joints reinforced with 0.5 wt.% RGO showed 22% higher strength than the joints without RGO reinforcements. Secondly, the effects of moisture, salt environment, and dry heat condition were investigated on the strength of the butt joints with different RGO contents. Results show that RGO particles significantly improve the strength values of the joints exposed to moist and dry heat conditions, but have less effect in salt environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.G. Lee, K.S. Jeong, K.S. Kim, Y.K. Kwak, Development of the anthropomorphic robot with carbon fiber epoxy composite materials. Compos. Struct. 25(1–4), 313–324 (1993)

    Article  Google Scholar 

  2. T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets. Comput. Mater. Sci. 50(4), 1256–1262 (2011)

    Article  Google Scholar 

  3. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  4. E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, A. Rousset, Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater. 48(14), 3803–3812 (2000)

    Article  Google Scholar 

  5. Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 39(12), 1876–1883 (2008)

    Article  Google Scholar 

  6. P.C. Ma, J.-K. Kim, B.Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44(15), 3232–3238 (2006)

    Article  Google Scholar 

  7. J. Zhu, J. Kim, H. Peng, J.L. Margrave, V.N. Khabashesku, E.V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 3(8), 1107–1113 (2003)

    Article  Google Scholar 

  8. P. Karapappas, A. Vavouliotis, P. Tsotra, V. Kostopoulos, A. Palpetis, Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. J. Compos. Mater. 43, 977–985 (2009)

    Article  Google Scholar 

  9. K.-D.S. Davey, Electronic Theses, Treatises and Dissertations Paper, 823, 2005

  10. F.H. Gojny, M.H. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15), 2300–2313 (2005)

    Article  Google Scholar 

  11. S. Jana, W.-H. Zhong, Y.X. Gan, Characterization of the flexural behavior of a reactive graphitic nanofibers reinforced epoxy using a non-linear damage model. Mater. Sci. Eng. A 445, 106–112 (2007)

    Article  Google Scholar 

  12. Y.J. Kim, T.S. Shin, Choi H. Do, J.H. Kwon, Y.-C. Chung, H.G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1), 23–30 (2005)

    Article  Google Scholar 

  13. N. Yu, Z. Zhang, S. He, Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater. Sci. Eng. A 494(1), 380–384 (2008)

    Article  Google Scholar 

  14. M. Rahman, S. Zainuddin, M. Hosur, J. Malone, M. Salam, A. Kumar et al., Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos. Struct. 94(8), 2397–2406 (2012)

    Article  Google Scholar 

  15. M.-H. Kang, J.-H. Choi, J.-H. Kweon, Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes. Compos. Struct. 108, 417–422 (2014)

    Article  Google Scholar 

  16. G. Gkikas, D. Sioulas, A. Lekatou, N. Barkoula, A. Paipetis, Enhanced bonded aircraft repair using nano-modified adhesives. Mater. Des. 41, 394–402 (2012)

    Article  Google Scholar 

  17. J. Kim, B.-S. Yim, J.-M. Kim, J. Kim, The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs). Microelectron. Reliab. 52(3), 595–602 (2012)

    Article  Google Scholar 

  18. U. Khan, P. May, H. Porwal, K. Nawaz, J.N. Coleman, Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS Appl. Mater. Interfaces 5(4), 1423–1428 (2013)

    Article  Google Scholar 

  19. K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012)

    Article  Google Scholar 

  20. S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Fast and Fully-Scalable Synthesis of Reduced Graphene Oxide. Scientific Reports, 5, 2015.

  21. K. Katnam, J. Stevenson, W. Stanley, M. Buggy, T. Young, Tensile strength of two-part epoxy paste adhesives: influence of mixing technique and micro-void formation. Int. J. Adhes. Adhes. 31(7), 666–673 (2011)

    Article  Google Scholar 

  22. M. Frigione, M. Aiello, C. Naddeo, Water effects on the bond strength of concrete/concrete adhesive joints. Constr. Build. Mater. 20(10), 957–970 (2006)

    Article  Google Scholar 

  23. P. Hu, X. Han, W. Li, L. Li, Q. Shao, Research on the static strength performance of adhesive single lap joints subjected to extreme temperature environment for automotive industry. Int. J. Adhes. Adhes. 41, 119–126 (2013)

    Article  Google Scholar 

  24. S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen et al., Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91(5), 385–389 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Saeimi Sadigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeimi Sadigh, M.A. Studying the Effect of Different Environmental Conditions on the Tensile Strength of RGO Reinforced Adhesively Bonded Butt Joints. J Fail. Anal. and Preven. 16, 1134–1140 (2016). https://doi.org/10.1007/s11668-016-0202-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-016-0202-2

Keywords

Navigation