Skip to main content
Log in

First Ply Failure Study of Composite Conoidal Shells Used as Roofing Units in Civil Engineering

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In practical civil engineering, the necessity of covering large column free open areas with shell surfaces is often an issue. Such areas in medicinal plants and automobile industries prefer entry of north light through the roofing units. Doubly curved singly ruled conoidal shells are stiff and easy to fabricate as surfaces and fit excellently to the above-mentioned industrial requirements. Today, the engineers intend to use laminated composites to fabricate these shell forms. Engineers are also concerned with the performance evaluation of different stacking sequences to maximize the stiffness for a given quantity of material consumption. First ply failure load analysis of composite plates appears abundantly in the literature, but on composite shells, only a few papers are found (though not on conoidal shells). This paper addresses an important issue with which the practical engineers are often concerned regarding performance evaluation of different laminations (including antisymmetric and symmetric cross and angle plies) in terms of first ply failure load of composite conoids. The paper uses the finite element method as the mathematical tool and concludes logically to a set of inferences of practical engineering significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Area of the shell

{d}:

Displacements of the shell

{d e}:

Element displacements

E 11, E 22, E 33 :

Elastic moduli

1, 2 and 3:

Local coordinates of a lamina

G 12, G 23, G 13 :

Shear moduli

ne :

Number of elements

R yy :

Radius of curvature of the conoidal shell along the “y” axis

R xy :

Radius of cross curvature of the conoidal shell

T :

Shear strength of lamina

T ε :

Allowable shear strain of lamina

v / :

Volume of the shell

X T, X C :

Normal strengths of lamina in tension and compression, respectively

X εT, X εC :

Allowable normal strains of lamina in tension and compression, respectively

\( \bar{y} \) :

y/b

Y T, Y C :

Normal strengths of matrix in tension and compression, respectively

Y εT, Y εC :

Allowable normal strains of matrix in tension and compression, respectively

ν ij :

Poisson’s ratio

σ 1 , σ 2 :

Normal stresses acting along 1 and 2 axes of a lamina, respectively

σ 6 :

Shear stress acting on 1–2 surface of a lamina

τ xy , τ xz , τ yz :

Shear stresses of the shell

k x , k y , k xy :

Curvature changes of the shell due to loading

References

  1. A.N. Nayak, J.N. Bandyopadhyay, J. Eng. Mech. ASCE 128, 419–427 (2002)

    Article  Google Scholar 

  2. A.N. Nayak, J.N. Bandyopadhyay, J. Eng. Mech. ASCE 131, 100–105 (2005)

    Article  Google Scholar 

  3. A.N. Nayak, J.N. Bandyopadhyay, J. Sound Vib. 291, 1288–1297 (2006)

    Article  Google Scholar 

  4. H.S. Das, D. Chakravorty, J. Reinf Plast Compos 26, 1793–1819 (2007)

    Article  CAS  Google Scholar 

  5. H.S. Das, D. Chakravorty, J. Strain Anal. Eng. Des. 45, 165–177 (2009)

    Article  Google Scholar 

  6. H.S. Das, D. Chakravorty, J. Compos. Mater. 45(2010), 525–542 (2010)

    Google Scholar 

  7. S. Kumari, D. Chakravorty, J. Reinf. Plast. Compos. 29, 3287–3296 (2010)

    Article  CAS  Google Scholar 

  8. S. Kumari, D. Chakravorty, J. Eng. Mech. ASCE 137, 660–668 (2011)

    Article  Google Scholar 

  9. S. Pradyumna, J.N. Bandyopadhyay, J. Reinf. Plastics Compos. 27, 167–186 (2008)

    Article  CAS  Google Scholar 

  10. S. Pradyumna, J.N. Bandyopadhyay, Thin Walled Struct. 49, 77–84 (2011)

    Article  Google Scholar 

  11. S.B. Singh, A. Kumar, Compos. Sci. Technol. 58, 1949–1960 (1998)

    Article  Google Scholar 

  12. G. Akhras, W.C. Li, Compos. Struct. 79, 34–43 (2007)

    Article  Google Scholar 

  13. R. Ganesan, D.Y. Liu, Compos. Struct. 82, 159–176 (2008)

    Article  Google Scholar 

  14. A.K. Pandey, J.N. Reddy, Comput. Struct. 25, 371–393 (1987)

    Article  Google Scholar 

  15. Y.S.N. Reddy, J.N. Reddy, Compos. Sci. Technol. 44, 227–255 (1992)

    Article  Google Scholar 

  16. T.Y. Kam, T.B. Jan, Compos. Struct. 32, 583–591 (1995)

    Article  Google Scholar 

  17. T.Y. Kam, H.F. Sher, J. Compos. Mater. 29, 463–482 (1995)

    Article  Google Scholar 

  18. T.Y. Kam, H.F. Sher, T.M. Chao, R.R. Chang, Int. J. Solids Struct. 33, 375–398 (1996)

    Article  Google Scholar 

  19. G.J. Turvey, M.Y. Osman, Compos. Part B 27, 505–518 (1996)

    Article  Google Scholar 

  20. M.D. Sciuva, U. Icardi, M. Villani, Compos. Struct. 40, 239–255 (1998)

    Article  Google Scholar 

  21. M. Cho, J.Y. Yoon, Compos. Struct. 40, 115–127 (1998)

    Article  Google Scholar 

  22. C. Ray, S.K. Satsangi, J. Reinf. Plast. Compos. 18, 1061–1076 (1999)

    CAS  Google Scholar 

  23. Y.V.S. Kumar, A. Srivastava, Compos. Struct. 60, 307–315 (2003)

    Article  Google Scholar 

  24. R.R. Chang, T.H. Chiang, Proc. Inst. Mech. Eng. 224, 233–245 (2010)

    Article  Google Scholar 

  25. J.Y. Zheng, P.F. Liu, Mater. Des. 31, 3825–3834 (2010)

    Article  Google Scholar 

  26. A. Lal, B.N. Singh, D. Patel, Compos. Struct. 94, 1211–1223 (2012)

    Article  Google Scholar 

  27. B.G. Prusty, C. Ray, S.K. Satsangi, Compos. Struct. 51, 73–81 (2001)

    Article  Google Scholar 

  28. H.A. Hadid, An analytical and experimental investigation into the bending theory of elastic conoidal shells. Ph.D Thesis. (University of Southampton, UK, 1964)

Download references

Acknowledgments

The first author gratefully acknowledges the financial assistance of the Council of Scientific and Industrial Research (India) through the Senior Research Fellowship vide Grant No. 09/096 (0686) 2k11-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustav Bakshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakshi, K., Chakravorty, D. First Ply Failure Study of Composite Conoidal Shells Used as Roofing Units in Civil Engineering. J Fail. Anal. and Preven. 13, 624–633 (2013). https://doi.org/10.1007/s11668-013-9725-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-013-9725-y

Keywords

Navigation