Skip to main content
Log in

Improved Corrosion Protection of Magnesium Alloys AZ31B and AZ91 by Cold-Sprayed Aluminum Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Magnesium (Mg) alloys have a high strength/weight ratio, high dimensional stability, good machinability, and the ability to be recycled. However, their poor corrosion resistance in humid environments limits their usage for exterior aerospace components. This study aims to improve the corrosion resistance of two Mg alloys (AZ31B and AZ91) by using aluminum coatings. The latter have been deposited by a low pressure and temperature cold spray process. An aluminum powder (60 wt%) with a particle size ranging between 1 and 8 µm and nickel powder (40 wt%) with a particle size of about 70 µm were blended and used as feedstock powder. The coating thickness was about 240 μm. Its densification was achieved by the in-situ hammering effect of the nickel particles. The shot-peening effect also resulted in an enhanced coating hardness. The microstructure, mechanical properties, and corrosion resistance of the coatings have been investigated. They showed that the aluminum had a face centered cubic structure. Potentiodynamic polarization tests were performed along with a combination of materials characterization techniques to assess the corrosion resistance of the coatings when immersed in a 3.5 wt% NaCl solution for long durations. The results revealed that the corrosion resistance increased with the immersion time because of the formation of a protective oxide layer on the surface. These results were supported by elemental and structural analyses. This study shows that cold-sprayed aluminum coatings are a promising candidate for enhancing the corrosion resistance of AZ31B and AZ91Mg alloys compared to other thermal spray processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Mayer, H.J. Lipowsky, M. Papakyriacou, R. Rosch, A. Stich, and S. Stanzl-Tschegg, Application of Ultrasound for Fatigue Testing of Lightweight Alloys, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 591-599. https://doi.org/10.1046/j.1460-2695.1999.00205.x

    Article  CAS  Google Scholar 

  2. H. Friedrich and S. Schumann, Research for a “New Age of Magnesium” in the Automotive Industry, J. Mater. Process. Technol., 2001, 117, p 276-281. https://doi.org/10.1016/S0924-0136(01)00780-4

    Article  CAS  Google Scholar 

  3. G. Davies, Magnesium: Materials for Automotive Bodies, Elsevier, London, 2005, p 158-159

    Google Scholar 

  4. H. Huo, Y. Li, and F. Wang, Corrosion of AZ91D Magnesium Alloy with a Chemical Conversion Coating and Electroless Nickel Layer, Corros. Sci., 2004, 46, p 1467-1477. https://doi.org/10.1016/j.corsci.2003.09.023

    Article  CAS  Google Scholar 

  5. C. Potzies and K.U. Kainer, Fatigue of Magnesium Alloys, Adv. Eng. Mater., 2004, 6, p 281-289. https://doi.org/10.1002/adem.200400021

    Article  CAS  Google Scholar 

  6. Z.B. Sajuri, Y. Miyashita, Y. Hosokai, and Y. Mutoh, Effects of Mn Content and Texture On Fatigue Properties of As-Cast and Extruded AZ61 Magnesium Alloys, Int. J. Mech. Sci., 2006, 48, p 198-209. https://doi.org/10.1016/j.ijmecsci.2005.09.003

    Article  Google Scholar 

  7. K. Fritzsch, R. Zenkera, and A. Buchwalder, Improved Surface Properties of AZ31 and AZ91 Mg Alloys Due to Electron Beam Liquid Phase Surface Treatment, Mater. Today Proc., 2015, 2S, p 188-196. https://doi.org/10.1016/j.matpr.2015.05.009

    Article  Google Scholar 

  8. J.X. Li, Y. Zhang, J.Y. Li, and J.X. Xie, Effect of Trace HA on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-2Zn-0.5Sr Alloy, J. Mater. Sci. Technol., 2018, 34, p 299-310. https://doi.org/10.1016/j.jmst.2017.06.013

    Article  Google Scholar 

  9. A. Atrens, S. Johnston, Z. Shi, and M.S. Dargusch, Viewpoint—Understanding Mg Corrosion in the Body for Biodegradable Medical Implants, Scr. Mater., 2018, 154, p 92-100. https://doi.org/10.1016/j.scriptamat.2018.05.021

    Article  CAS  Google Scholar 

  10. L.Y. Cui, Y. Hu, R.C. Zeng, Y.X. Yang, D.D. Sun, S.Q. Li, F. Zhang, and E.H. Han, New Insights into the Effect of Tris-HCl and Tris on Corrosion of Magnesium Alloy in Presence of Bicarbonate, Sulfate, Hydrogen Phosphate and Dihydrogen Phosphate Ions, J. Mater. Sci. Technol., 2017, 33, p 971-988. https://doi.org/10.1016/j.jmst.2017.01.005

    Article  CAS  Google Scholar 

  11. P. Chakraborty Banerjee, S. Al-Saadi, L. Choudhary, S.E. Harandi, and R. Singh, Magnesium Implants: Prospects and Challenges, Materials, 2019, 12, p 136-157. https://doi.org/10.3390/ma12010136

    Article  CAS  Google Scholar 

  12. Q. Luo, C. Zhai, Q. Gu, W. Zhu, and Q. Li, Experimental Study and Thermodynamic Evaluation of Mg–La–Zn System, J. Alloys Compd., 2020, 814, p 152297-152300. https://doi.org/10.1016/j.jallcom.2019.152297

    Article  CAS  Google Scholar 

  13. W. Wu, Z. Wang, S. Zang, X. Yu, H. Yang, and S. Chang, Research Progress on Surface Treatments of Biodegradable Mg Alloys: A Review, ACS Omega, 2020, 5, p 941-947. https://doi.org/10.1021/acsomega.9b03423

    Article  CAS  Google Scholar 

  14. H. Somekawa, Effect of Alloying Elements on Fracture Toughness and Ductility in Magnesium Binary Alloys: A Review, Mater. Trans., 2020, 61, p 1-13. https://doi.org/10.2320/matertrans.MT-M2019185

    Article  CAS  Google Scholar 

  15. T. Kaneko, M. Suzuhami, Automotive applications of magnesium alloys, in: Y. Kojima, S. Kamado, T. Aizawa, K. Higashi (Eds.) 2nd Osaka International Conference on PlatformScience and Technology for Advanced Magnesium Alloys, 2003, pp. 67–74. Trans Tech Publications Ltd, (2003).

  16. B. Viehweger, M. During, A. Karabet, and H.J. Hartmann, Evaluation of Forming Behaviour and Tribological Properties of Magnesium Sheet-metal Directly Rolled From Semi-continuously Casted Feedstock, Magnesium, Proceedings of the 7th International Conference on Magnesium Alloys and Their Applications, K.-U. Kainer, Ed., Wiley-VCH, Weinheim, 2004, p 377-385

    Google Scholar 

  17. N.J. Kim, Critical Assessment 6: Magnesium Sheet Alloys: Viable Alternatives to Steels?, Mater. Sci. Technol., 2014, 30, p 1925-1928. https://doi.org/10.1179/1743284714y.0000000596

    Article  CAS  Google Scholar 

  18. Y. Fan, G. Wu, and C. Zhai, Influence of Cerium on the Microstructure, Mechanical Properties and Corrosion Resistance of Magnesium Alloy, Mater. Sci. Eng., A, 2006, 433, p 208-215. https://doi.org/10.1016/j.msea.2006.06.109

    Article  CAS  Google Scholar 

  19. J. Zhang, J. Xu, W. Cheng, C. Chen, and J. Kang, Corrosion Behavior of Mg–Zn–Y Alloy with Long-period Stacking Ordered Structures, J. Mater. Sci. Technol., 2012, 28, p 1157-1162. https://doi.org/10.1016/S1005-0302(12)60186-8

    Article  CAS  Google Scholar 

  20. R. Arrabal, A. Pardo, M.C. Merino, M. Mohedano, P. Casajús, K. Paucar, and G. Garcés, Effect of Nd on the Corrosion Behaviour of AM50 and AZ91D Magnesium Alloys in 3.5 wt% NaCl Solution, Corros. Sci., 2012, 55(2012), p 301-312. https://doi.org/10.1016/j.corsci.2011.10.033

    Article  CAS  Google Scholar 

  21. Y. Song, D. Shan, and E.H. Han, Pitting Corrosion of a Rare Earth Mg Alloy GW93, J. Mater. Sci. Technol., 2017, 33, p 954-960. https://doi.org/10.1016/j.jmst.2017.01.014

    Article  CAS  Google Scholar 

  22. R.G. Hu, S. Zhang, J.F. Bu, C.J. Lin, and G.L. Song, Recent Progress in Corrosion Protection of Magnesium Alloys by Organic Coatings, Prog. Org. Coat., 2012, 73, p 129-141. https://doi.org/10.1016/j.porgcoat.2011.10.011

    Article  CAS  Google Scholar 

  23. W. Liu, Q. Li, and M.C. Li, Corrosion Behaviour Of Hot-Dip Al–Zn–Si and Al–Zn–Si–3 Mg Coatings in NaCl Solution, Corros. Sci., 2017, 121, p 72-83. https://doi.org/10.1016/j.corsci.2017.03.013

    Article  CAS  Google Scholar 

  24. A. Viscusi, A. Astarita, R. Della Gatta, and F. Rubino, A Perspective Review on the Bonding Mechanisms in Cold Gas Dynamic Spray, Surf. Eng., 2019, 35, p 743-771. https://doi.org/10.1080/02670844.2018.1551768

    Article  CAS  Google Scholar 

  25. W.Y. Li, C.C. Cao, G.Q. Wang, F.F. Wang, Y.X. Xu, and X.W. Yang, Cold spray +’ as a New Hybrid Additive Manufacturing Technology: A Literature Review, Sci. Tech. Weld. Joining., 2019, 24, p 420-445. https://doi.org/10.1080/13621718.2019.1603851

    Article  Google Scholar 

  26. R.N. Raoelison, L.L. Koithara, S. Costil, and C. Langlade, Turbulences of the Supersonic Gas Flow During Cold Spraying and Their Negative Effects: A DNS CFD Analysis Coupled with Experimental Observation and Laser Impulse High-Speed Shadowgraphs of the Particles in-Flight Flow, Int. J. Heat Mass Transf., 2020, 147, p 118894-118913. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118894

    Article  Google Scholar 

  27. J. Morère, D. P. Schmidt, P. Liebersbach, J. J. Watkins, Suppression of Clogging in Cold Spray Nozzles, (University of Massachusetts Amherst), CSAT (2018).

  28. X. Wang, B. Zhang, J. Lv, and S. Yin, Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle, J. Therm. Spray Technol., 2015, 24, p 696-701. https://doi.org/10.1007/s11666-015-0227-1

    Article  CAS  Google Scholar 

  29. Xiao-Tao Luo, Ying-Kang Wei, Yan Wang, and Chang-Jiu Li, Microstructure and Mechanical Property of Ti and Ti6Al4V Prepared by an In Situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527-533. https://doi.org/10.1016/j.matdes.2015.07.015

    Article  CAS  Google Scholar 

  30. Ying-Kang Wei, Xiao-Tao Luo, Cheng-Xin Li, and Chang-Jiu Li, Optimization of In Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg alloy by Fully Dense al- Based Alloy Coating, J. Therm. Spray Technol., 2017, 26, p 173-183. https://doi.org/10.1007/s11666-016-0492-7

    Article  CAS  Google Scholar 

  31. D. Nakama, K. Katoh, and H. Tokisue, Some Characteristics of AZ31/AZ91 Dissimilar Magnesium Alloy Deposit by Friction Surfacing, Mater. Trans., 2008, 49, p 1137-1141. https://doi.org/10.2320/matertrans.MC200779

    Article  CAS  Google Scholar 

  32. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394. https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  CAS  Google Scholar 

  33. S.A. Alidokht, P. Vo, S. Yue, and R.R. Chromik, Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings, J. Therm. Spray Technol., 2017, 26, p 1908-1921. https://doi.org/10.1007/s11666-017-0636-4

    Article  CAS  Google Scholar 

  34. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742. https://doi.org/10.1016/j.actamat.2005.10.005

    Article  CAS  Google Scholar 

  35. H. Bu, M. Yandouzi, C. Lu, D. MacDonald, and B. Jodoin, Cold Spray Blended Al + Mg17Al12 Coating for Corrosion Protection of AZ91D Magnesium Alloy, Surf. Coat. Technol., 2012, 207, p 155-162. https://doi.org/10.1016/j.surfcoat.2012.06.050

    Article  CAS  Google Scholar 

  36. J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications, 1st ed., Springer, Berlin, 2015

    Book  Google Scholar 

  37. E. Irissou and B. Arsenault, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Thermal Spray Technol., 2007, 16, p 661-668. https://doi.org/10.1007/s11666-007-9086-8

    Article  CAS  Google Scholar 

  38. S. Khandanjou, M. Ghoranneviss, and S. Saviz, The Detailed Analysis of the Spray Time Effects of the Aluminium Coating Using Self-Generated Atmospheric Plasma Spray System on the Microstructure and Corrosion Behavior, Results Phys., 2017, 7, p 1440-1445. https://doi.org/10.1016/j.rinp.2017.04.014

    Article  Google Scholar 

  39. R. Fernandez and B. Jodoin, Cold Spray Aluminum-Alumina Cermet Coatings: effect of Alumina Content, J. Thermal Spray Technol., 2018, 27, p 603-623. https://doi.org/10.1007/s11666-018-0702-6

    Article  CAS  Google Scholar 

  40. I.B. Singh, M. Singh, and S. Das, A comparative corrosion behaviour of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution, J. Magnes. Alloys, 2015, 3, p 142-148. https://doi.org/10.1016/j.jma.2015.02.004

    Article  CAS  Google Scholar 

  41. Y.K. Wei, Y.J. Li, Y. Zhang, X.T. Luo, and C.J. Li, Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in situ shot-peening-assisted cold spray, Corros. Sci., 2018, 138, p 105-115. https://doi.org/10.1016/j.corsci.2018.04.018

    Article  CAS  Google Scholar 

  42. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, 1975

    Google Scholar 

  43. R.T. Foley and T.H. Nguyen, Chemical Nature of Aluminum Corrosion—2: the Initial Dissolution Step, J. Electrochem. Soc., 1982, 192, p 129

    Google Scholar 

  44. C.B. Breslin, G. Treacy, and W.M. Cornell, Studies on the Passivation of Aluminium in Chromate and Molybdate Solutions, Corrosion Sci., 1994, 36, p 1143-1154

    Article  CAS  Google Scholar 

  45. C. Ma, X. Liu, and C. Zhou, Cold-Sprayed Al Coating for Corrosion Protection of Sintered NdFeB, J. Thermal Spray Tech., 2013, 23, p 456-462. https://doi.org/10.1007/s11666-013-9994-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Director, CSIR-National Aerospace Laboratories, Bangalore, for providing the facilities. The authors would like to express their gratitude to Mr. Siju, Mr. Srinivas, and Mr. Praveen Kumar for their assistance rendered during the FESEM, XRD and 3D profilometry characterizations, respectively. The authors would like to thank Dr. M.K. Naidu for his support and encouragement. The present work has not been supported by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. S. Chakradhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakradhar, R.P.S., Chandra Mouli, G., Barshilia, H. et al. Improved Corrosion Protection of Magnesium Alloys AZ31B and AZ91 by Cold-Sprayed Aluminum Coatings. J Therm Spray Tech 30, 371–384 (2021). https://doi.org/10.1007/s11666-020-01128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01128-0

Keywords

Navigation