Skip to main content
Log in

Imaging Slit Pores Under Delaminated Splats by White Light Interference

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The slit pores under delaminated films significantly contribute to the properties of the film and the coating. In the present study, a novel and practical technique, the white light interference method, is proposed to characterize the slit pores covered by the 8YSZ and LZ splats. In this method, only an ordinary optical microscopy (OM) is used. Interestingly, colorful Newton’s rings and parabolic shapes of the slit pores were clearly observed by OM. The crack spacing and the shapes of the slit pores captured by OM were in good agreement with those obtained by scanning electron microscopy and focus ion beam. Moreover, this is the first time when successful quantitative imaging of the slit pores under the thermal spray splats is achieved. Besides, mechanical analyses were carried out, and the results were consistent with those obtained by OM. In addition, the essential fact that the slit pores were mainly caused by transverse cracking/delamination in the thermal spray coatings was clarified. These results indicate that white light interference is an excellent method to characterize the slit pores under smooth and transparent films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.W. Hutchinson and Z. Suo, Mixed-Mode Cracking in Layered Materials, Adv. Appl. Mech., 1992, 29, p 63-191

    Article  Google Scholar 

  2. M.D. Thouless, H.C. Cao, and P.A. Mataga, Delamination from Surface Cracks in Composite-Materials, J. Mater. Sci., 1989, 24(4), p 1406-1412

    Article  Google Scholar 

  3. M.D. Thouless, A.G. Evans, M.F. Ashby, and J.W. Hutchinson, The Edge Cracking and Spalling of Brittle Plates, Acta Metall., 1987, 35(6), p 1333-1341

    Article  Google Scholar 

  4. H.X. Mei, Y.Y. Pang, and R. Huang, Influence of Interfacial Delamination on Channel Cracking of Elastic Thin Films, Int. J. Fract., 2007, 148(4), p 331-342

    Article  Google Scholar 

  5. Z. Suo and J.W. Hutchinson, Steady-State Cracking in Brittle Substrates Beneath Adherent Films, Int. J. Solids Struct., 1989, 25(11), p 1337-1353

    Article  Google Scholar 

  6. A. Bagchi and A.G. Evans, The Mechanics and Physics of Thin Film Decohesion and Its Measurement, Interface Sci., 1996, 3(3), p 169-193

    Article  Google Scholar 

  7. T. Ye, Z. Suo and A.G. Evans, Thin-Film Cracking and the Roles of Substrate and Interface, Int. J. Solids Struct., 1992, 29(21), p 2639-2648

    Article  Google Scholar 

  8. Z. Suo, Reliability of Interconnect Structures, Volume, 2003, 8, p 265-324

    Google Scholar 

  9. N.P. Padture, M. Gell, and E.H. Jordan, Materials Science—Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  10. N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15(8), p 804-809

    Article  Google Scholar 

  11. Y.Z. Xing, C.J. Li, C.X. Li, and G.J. Yang, Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells, J. Power Sources, 2008, 176(1), p 31-38

    Article  Google Scholar 

  12. S. Wilson, Thermally Sprayed Abradable Coating Technology for Sealing in Gas Turbines. in 6th International Conference on the Future of Gas Turbine Technology (2012)

  13. D. Sporer, M. Dorfman, L. Xie, A. Refke, I. Giovannetti, and M. Giannozzi, Processing and Properties of Advanced Ceramic Abradable Coatings, Therm. Spray 2007 Glob. Coat. Solut., 2007, 2007, p 14-16

    Google Scholar 

  14. A. Ohmori and C.J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201(2), p 241-252

    Article  Google Scholar 

  15. S. Rangarajan and A.H. King, Non-destructive Evaluation of Delamination in Ceramic Thin Films on Metal Substrates by Scanning Electron Microscopy, Thin Solid Films, 2001, 385(1–2), p 22-28

    Article  Google Scholar 

  16. V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel, Development of Substrate-Coating Adhesion in Thermal Spraying, Int. Mater. Rev., 1997, 42(3), p 117-136

    Article  Google Scholar 

  17. C.J. Li and J.L. Li, Transient Contact Pressure During Flattening of Thermal Spray Droplet and Its Effect on Splat Formation, J. Therm. Spray Technol., 2004, 13(2), p 229-238

    Article  Google Scholar 

  18. X.Y. Jiang, Y.P. Wan, H. Herman, and S. Sampath, Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spray, Thin Solid Films, 2001, 385(1–2), p 132-141

    Article  Google Scholar 

  19. M.X. Xue, S. Chandra, and J. Mostaghimi, Investigation of Splat Curling Up in Thermal Spray Coatings, J. Therm. Spray Technol., 2006, 15(4), p 531-536

    Article  Google Scholar 

  20. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part I. First Splat Solidification, Thin Solid Films, 2001, 397(1–2), p 30-39

    Article  Google Scholar 

  21. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part II. Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397(1–2), p 40-48

    Article  Google Scholar 

  22. T. Chraska and A.H. King, Effect of Different Substrate Conditions Upon Interface with Plasma Sprayed Zirconia—A TEM Study, Surf. Coat. Technol., 2002, 157(2–3), p 238-246

    Article  Google Scholar 

  23. J. Matejicek, S. Sampath, P.C. Brand, and H.J. Prask, Quenching, Thermal and Residual Stress in Plasma Sprayed Deposits: NiCrAlY and YSZ Coatings, Acta Mater., 1999, 47(2), p 607-617

    Article  Google Scholar 

  24. P. Bengtsson and C. Persson, Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1997, 92(1–2), p 78-86

    Article  Google Scholar 

  25. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  26. S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma-Sprayed Coatings and Its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84

    Article  Google Scholar 

  27. S. Kuroda, T. Fukushima, and S. Kitahara, Significance of Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings, J. Therm. Spray Technol., 1992, 1(4), p 325-332

    Article  Google Scholar 

  28. S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. Struct., 1999, 272(1), p 181-188

    Article  Google Scholar 

  29. S. Sampath and X. Jiang, Splat Formation and Microstructure Development During Plasma Spraying: Deposition Temperature Effects, Mater. Sci. Eng. Struct., 2001, 304, p 144-150

    Article  Google Scholar 

  30. X. Jiang, J. Matejicek, and S. Sampath, Substrate Temperature Effects on the Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part II: Case Study for Molybdenum, Mater. Sci. Eng. Struct., 1999, 272(1), p 189-198

    Article  Google Scholar 

  31. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, CUP, Cambridge, 2000

    Google Scholar 

  32. W.C. Chiu, M.D. Thouless, and W.J. Endres, An Analysis of Chipping in Brittle Materials, Int. J. Fract., 1998, 90(4), p 287-298

    Article  Google Scholar 

  33. W.-C. Chiu, An Investigation of Machining Amorphous Brittle Materials. Ph.D. Thesis, University of Michigan (1999)

  34. A. Yuse and M. Sano, Transition Between Crack Patterns in Quenched Glass Plates, Nature, 1993, 362(6418), p 329-331

    Article  Google Scholar 

  35. A. Yuse and M. Sano, Instabilities of Quasi-Static Crack Patterns in Quenched Glass Plates, Phys. D, 1997, 108(4), p 365-378

    Article  Google Scholar 

  36. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, J.C. Krapez, and M. Vardelle, Temperature Evolution of Plasma-Sprayed Niobium Particles Impacting on a Substrate, Surf. Coat. Technol., 1991, 46(2), p 173-187

    Article  Google Scholar 

  37. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D Appl. Phys., 1971, 4(11), p 1657-1660

    Article  Google Scholar 

  38. T. Nakamura and S.M. Kamath, Three-Dimensional Effects in Thin Film Fracture Mechanics, Mech. Mater., 1992, 13(1), p 67-77

    Article  Google Scholar 

  39. H. Tada, P. Paris, and G. Irwin, The Analysis of Cracks Handbook, ASME Press, New York, 2000

    Google Scholar 

  40. J. Gere and S. Timoshenko, Mechanics of Materials, PWS Pub Co, Boston, 1997

    Google Scholar 

  41. M.D. Thouless, E. Olsson, and A. Gupta, Cracking of Brittle Films on Elastic Substrates, J. Am. Ceram. Soc., 1990, 73(7), p 2144-2146

    Article  Google Scholar 

  42. M.D. Thouless, E. Olsson, and A. Gupta, Cracking of Brittle Films on Elastic Substrates, Acta Metall. Mater., 1992, 40(6), p 1287-1292

    Article  Google Scholar 

  43. Z.C. Xia and J.W. Hutchinson, Crack Patterns in Thin Films, J. Mech. Phys. Solids, 2000, 48(6–7), p 1107-1131

    Article  Google Scholar 

  44. V.B. Shenoy, A.F. Schwartzman, and L.B. Freund, Crack Patterns in Brittle Thin Films, Int. J. Fract., 2001, 109(1), p 29-45

    Article  Google Scholar 

  45. J.X. Huang, B.C. Kim, S. Takayama, and M.D. Thouless, The Control of Crack Arrays in Thin Films, J. Mater. Sci., 2014, 49(1), p 255-268

    Article  Google Scholar 

  46. M.D. Thouless, Z. Li, N.J. Douville, and S. Takayama, Periodic Cracking of Films Supported on Compliant Substrates, J. Mech. Phys. Solids, 2011, 59(9), p 1927-1937

    Article  Google Scholar 

  47. R. Nahta and B. Moran, Crack Spacing in Brittle Films on Dissimilar Planar and Axisymmetric Elastic Substrates, Eng. Fract. Mech., 1995, 52(3), p 513-524

    Article  Google Scholar 

  48. Z. Suo and J.W. Hutchinson, Interface Crack Between Two Elastic Layers, Int. J. Fract., 1990, 43(1), p 1-18

    Article  Google Scholar 

  49. T.Y. Zhang and M.H. Zhao, Equilibrium Depth and Spacing of Cracks in a Tensile Residual Stressed Thin Film Deposited on a Brittle Substrate, Eng. Fract. Mech., 2002, 69(5), p 589-596

    Article  Google Scholar 

  50. L. Chen and G.-J. Yang, Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats, J. Therm. Spray Technol., 2017, 26(5566), p 1168-1182

    Article  Google Scholar 

  51. E.J. Yang, X.T. Luo, G.J. Yang, C.X. Li, C.J. Li, and M. Takahashi, Epitaxial Grain Growth During 8YSZ Splat Formation on Polycrystalline YSZ Substrates by Plasma Spraying, Surf. Coat. Technol., 2015, 274(ITSC), p 37-43

    Article  Google Scholar 

Download references

Acknowledgments

The present project is supported by National Basic Research Program (No. 2013CB035701), the Fundamental Research Funds for the Central Universities, and the National Program for Support of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Jun Yang.

Appendix: Splat Morphologies by White Light Interference

Appendix: Splat Morphologies by White Light Interference

See Fig. 15.

Fig. 15
figure 15

The surface morphologies of (a-c) 8YSZ and (d-f) LZ splats at the deposition temperature of (a, d) 200, (b, e) 400, and (c, f) 500 °C by OM. Colorful Newton’s rings were widely observed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Gao, Ll. & Yang, GJ. Imaging Slit Pores Under Delaminated Splats by White Light Interference. J Therm Spray Tech 27, 319–335 (2018). https://doi.org/10.1007/s11666-018-0686-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0686-2

Keywords

Navigation