Skip to main content
Log in

Temperature Measurement Challenges and Limitations for In-Flight Particles in Suspension Plasma Spraying

  • Review
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2017

Abstract

Suspension plasma spraying (SPS) acquires a significant interest from the industry. The deposited coatings using this technique were proved to have unique microstructural features compared to those built by conventional plasma spraying techniques. In order to optimize this process, in-flight particle diagnostics is considered a very useful tool that helps to control various spraying parameters and permits better coating reproducibility. In that context, the temperature of in-flight particles is one of the most important key elements that helps to optimize and control the SPS process. However, the limitations and challenges associated with this process have a significant effect on the accuracy of two-color pyrometric techniques used to measure the in-flight particle temperature. In this work, the influence of several nonthermal radiation sources on the particle temperature measurement is studied. The plasma radiation scattered by in-flight particles was found to have no significant influence on temperature measurement. Moreover, the detection of the two-color signals at two different locations was found to induce a significant error on temperature measurement. Finally, the plasma radiation surrounding the in-flight particles was identified as the main source of error on the temperature measurement of in-flight particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Fauchais, A. Vardelle, Solution and Suspension Plasma Spraying of Nanostructure Coatings, in Salimi H, ed. Advanced Plasma Spray Applications, 21 March, 2012, p. 150-188

  2. P. Fauchais, R. Etchart-Salas, V. Rat, J. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  Google Scholar 

  3. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  Google Scholar 

  4. P. Fauchais, G. Montavon, M. Vardelle, and J. Cedelle, Developments in Direct Current Plasma Spraying, Surf. Coat. Technol., 2006, 201(5), p 1908-1921

    Article  Google Scholar 

  5. G. Mauer, R. Vaßen, and D. Stöver, Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications, J. Therm. Spray Technol., 2011, 20(3), p 391-406

    Article  Google Scholar 

  6. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Overview of Thermal Spray, Thermal Spray Fundamentals, Springer, Berlin, 2014, p 17-72

  7. C. Moreau, M. Lamontagne, and P. Cielo, Influence of the Coating Thickness on the Cooling Rates of Plasma-Sprayed Particles Impinging on a Substrate. Surface Coat. Technol., 1992, 53(2), p 107–114

    Article  Google Scholar 

  8. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829

    Article  Google Scholar 

  9. J. Bisson, B. Gauthier, and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Therm. Spray Technol., 2003, 12(1), p 38-43

    Article  Google Scholar 

  10. M. Gaona, R.S. Lima, and B.R. Marple, Influence of Particle Temperature and Velocity on the Microstructure and Mechanical Behaviour of High Velocity Oxy-Fuel (HVOF)-Sprayed Nanostructured Titania Coatings, J. Mater. Process. Technol., 2008, 198(1), p 426-435

    Article  Google Scholar 

  11. P.L. Fauchais, J.V. Heberlein, and M. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, Berlin, 2014

    Book  Google Scholar 

  12. C. Moreau, J. Bisson, R. Lima, and B. Marple, Diagnostics for Advanced Materials Processing by Plasma Spraying, Pure Appl. Chem., 2005, 77(2), p 443-462

    Article  Google Scholar 

  13. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424

    Article  Google Scholar 

  14. K. Hollis and R. Neiser, Analysis of the Nonthermal Emission Signal Present in a Molybdenum Particle-Laden Plasma-Spray Plume, J. Therm. Spray Technol., 1998, 7(3), p 383-391

    Article  Google Scholar 

  15. K. Hollis and R. Neiser, Particle Temperature and Flux Measurement Utilizing a Nonthermal Signal Correction Process, J. Therm. Spray Technol., 1998, 7(3), p 392-402

    Article  Google Scholar 

  16. P. Gougeon and C. Moreau, In-Flight Particle Surface Temperature Measurement: Influence of the Plasma Light Scattered by the Particles, J. Therm. Spray Technol., 1993, 2(3), p 229-233

    Article  Google Scholar 

  17. J.F. Bisson, M. Lamontagne, C. Moreau, L. Pouliot, J. Blain, F. Nadeau, Ensemble in-flight particle diagnostics under thermal spray conditions, in Thermal Spray 2001: New Surfaces for a New Millennium, Proceedings of the International Thermal Spray Conference, CC Berndt, KA Khor, EF Lugscheider, eds. 28-30 May 2001, Singapore, p. 705-714

  18. Z. Salhi, S. Guessasma, P. Gougeon, D. Klein, and C. Coddet, Diagnostic of YSZ In-Flight Particle Characteristics Under Low Pressure VPS Conditions, Aerosp. Sci. Technol., 2005, 9(3), p 203-209

    Article  Google Scholar 

  19. Z. Salhi, P. Gougeon, D. Klein, and C. Coddet, Influence of Plasma Light Scattered by In-Flight Particle on the Measured Temperature by High Speed Pyrometry, Infrared Phys. Technol., 2005, 46(5), p 394-399

    Article  Google Scholar 

  20. T. Sakuta and M.I. Boulos, Novel Approach for Particle Velocity and Size Measurement Under Plasma Conditions, Rev. Sci. Instrum., 1988, 59(2), p 285-291

    Article  Google Scholar 

  21. P. Fauchais and A. Vardelle, Thermal Plasmas, IEEE Trans. Plasma Sci., 1997, 25(6), p 1258-1280

    Article  Google Scholar 

  22. T.D. McGee, Principles and Methods of Temperature Measurement, Wiley, New York, 1988

    Google Scholar 

  23. S.D. Alaruri, L. Bianchini, and A.J. Brewington, Emissivity Measurements for YSZ Thermal Barrier Coating at High Temperatures Using a 1.6-μm Single-Wavelength Pyrometer, Opt. Eng., 1998, 37(2), p 683-687

    Article  Google Scholar 

  24. “PhotonControl”. Spectrometers. http://www.photon-control.com/spectroscopy.html. Accessed Dec 2016

  25. THORLABS. Adjustable lens tubes. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4109. Accessed Dec 2016

  26. Avantes. AvaLight-CAL spectral calibration source, https://avantes.com/products/light-sources/item/1151-avalight-cal-mini-spectral-calibration-source, Accessed Dec 2016

  27. TECNAR. Accuraspray G3C. http://www.tecnar.com/index.php/accuraspray-g3c. Accessed Dec 2016

  28. D. Céolin, T. Marchenko, R. Guillemin et al., Auger Resonant-Raman Study at the Ar K Edge as Probe of Electronic-State-Lifetime Interferences, Phys. Rev. A, 2015, 91(2), p 022502

    Article  Google Scholar 

  29. E.F. López, V.S. Escribano, M. Panizza, and M.M. Carnasciali, Vibrational and Electronic Spectroscopic Properties of Zirconia Powders, J. Mater. Chem., 2001, 11(7), p 1891-1897

    Article  Google Scholar 

  30. S.M. Lucas, C.P. Sundaram, J.S. Wolf et al., Factors that Impact the Outcome of Minimally Invasive Pyeloplasty: Results of the Multi-Institutional Laparoscopic and Robotic Pyeloplasty Collaborative Group, J. Urol., 2012, 187(2), p 522-527

    Article  Google Scholar 

  31. Y. Gning, M. Sow, A. Traoré et al., Calculations of Resonances Parameters for the ((2s 2) 1 S e (2s2p) 1, 3 P 0) and ((3s 2) 1 S e (3s3p) 1, 3 P 0) Doubly Excited States of Helium-Like Ions with Z ≤ 10 Using a Complex Rotation Method Implemented in Scilab, Radiat. Phys. Chem., 2015, 106, p 1-6

    Article  Google Scholar 

  32. Y. Zhang, L. Tang, X. Zhang, and T. Shi, Dynamic Dipole Polarizabilities for the Low-Lying Triplet States of Helium, Phys. Rev. A, 2015, 92(1), p 012515

    Article  Google Scholar 

  33. V. Stancalie, Contribution to the Theoretical Investigation of Electron and Photon Interaction with Carbon Atom and Its Ions, J. Phys. Conf. Ser., 2015, 576(1), p 012010

    Article  Google Scholar 

  34. J. Reader and M.D. Lindsay, Spectrum and Energy Levels of Five-Times Ionized Zirconium (zr VI), Phys. Scr., 2016, 91(2), p 025401

    Article  Google Scholar 

  35. F. Hu, M. Mei, C. Han, B. Han, G. Jiang, and J. Yang, Accurate Multiconfiguration Dirac–Hartree–Fock Calculations of Transition Probabilities for Magnesium-Like Ions, J. Quant. Spectrosc. Radiat. Transfer, 2014, 149, p 158-167

    Article  Google Scholar 

  36. A. Fridman and L.A. Kennedy, Plasma Physics and Engineering, CRC Press, Boca Raton, 2004

    Book  Google Scholar 

  37. P.G. Cielo, Optical Techniques for Industrial Inspection, Academic Press, London, 1988

    Google Scholar 

  38. Philip Laven. MiePlot v 4.5, http://www.philiplaven.com/mieplot.htm. Accessed 2014

  39. S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, Optical and Mechanical Properties of Amorphous and Crystalline Yttria-Stabilized Zirconia Thin Films Prepared by Pulsed Laser Deposition, Acta Mater., 2011, 59(6), p 2330-2340

    Article  Google Scholar 

  40. G. Bourque, M. Lamontagne, C. Moreau, Method and Apparatus for On-Line Monitoring the Temperature and velocity of Thermally Sprayed Particles. US Patent 5986277 A, 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishoy Aziz.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11666-017-0552-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, B., Gougeon, P. & Moreau, C. Temperature Measurement Challenges and Limitations for In-Flight Particles in Suspension Plasma Spraying. J Therm Spray Tech 26, 695–707 (2017). https://doi.org/10.1007/s11666-017-0543-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0543-8

Keywords

Navigation