Skip to main content
Log in

Modeling Plasma–Particle Interaction in Multi-Arc Plasma Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The properties of plasma-sprayed coatings are controlled by the heat, momentum, and mass transfer between individual particles and the plasma jet. The particle behavior in conventional single-arc plasma spraying has been the subject of intensive numerical research, whereas multi-arc plasma spraying has not yet received the same attention. We propose herein a numerical model to serve as a scientific tool to investigate particle behavior in multi-arc plasma spraying. In the Lagrangian description of particles in the model, the mathematical formulations describing the heat, momentum, and mass transfer are of great importance for good predictive power, so such formulations proposed by different authors were compared critically, revealing that different mathematical formulations lead to significantly different results. The accuracy of the different formulations was evaluated based on theoretical considerations, and those found to be more accurate were implemented in the final model. Furthermore, a mathematical formulation is proposed to enable simplified calculation of partial particle melting and resolidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Pfender and Y.C. Lee, Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part I: The Motion of a Single Particle Without Thermal Effects, Plasma Chem. Plasma Process., 1985, 5(3), p 211-237. doi:10.1007/BF00615122

    Article  Google Scholar 

  2. F.M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1974). ISBN: 978-0072402315

  3. Y.P. Wan, V. Prasad, G.-X. Wang, S. Sampath, and J.R. Fincke, Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes, J. Heat Transf., 1999, 121, p 691-699. doi:10.1115/1.2826034

    Article  Google Scholar 

  4. S. Dyshlovenko, B. Pateyron, L. Pawlowski, and D. Murano, Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet, Surf. Coat. Technol., 2004, 179(1), p 110-117. doi:10.1016/S0257-8972(03)00799-0

    Article  Google Scholar 

  5. J. Mostaghimi, S. Chandra, R. Ghafouri-Azar, and A. Dolatabadi, Modeling Thermal Spray Coating Processes: A Powerful Tool in Design and Optimization, Surf. Coat. Technol., 2003, 163-164, p 1-11. doi:10.1016/S0257-8972(02)00686-2

    Article  Google Scholar 

  6. T. Zhang, Y. Bao, D.T. Gawne, B. Liu, and J. Karwattzki, Computer Model to Simulate the Random Behaviour of Particles in a Thermal-Spray Jet, Surf. Coat. Technol., 2006, 201, p 3552-3563. doi:10.1016/j.surfcoat.2006.08.108

    Article  Google Scholar 

  7. M.P. Planche, R. Bolot, and C. Coddet, In-Flight Characteristics of Plasma Sprayed Alumina Particles: Measurements, Modeling, and Comparison, J. Therm. Spray Technol., 2003, 12(1), p 101-111. doi:10.1361/105996303770348555

    Article  Google Scholar 

  8. T.K. Thiyagarajan, K.P. Sreekumar, V. Selvan, K. Ramachandran, and P.V. Ananthapadmanabhan, Simulation Studies to Optimize the Process of Plasma Spray Deposition of Yttrium Oxide, J. Phys. Conf. Ser., 2010, doi:10.1088/1742-6596/208/1/012116

    Google Scholar 

  9. Y.C. Lee, Y.P. Chyou, and E. Pfender, Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas, Part II: Particle Heat and Mass Transfer in Thermal Plasmas, Plasma Chem. Plasma Process., 1985, 5(4), p 391-414. doi:10.1007/BF00566011

    Article  Google Scholar 

  10. W.E. Ranz and W.R. Marshall, Jr., Vaporation from Drops, Part I, Chem. Eng. Prog., 1952, 48(3), p 141-146

    Google Scholar 

  11. W.E. Ranz and W.R. Marshall, Jr., Evaporation from Drops, Part I, and Part II, Chem. Eng. Prog., 1952, 48(4), p 173-180

    Google Scholar 

  12. D.Y.C. Wei, B. Farouk, and D. Apelian, Melting Metal Powder Particles in an Inductively Coupled R.F. Plasma Torch, Metall. Trans. B, 1988, 19B, p 213-226. doi:10.1007/BF02654205

    Article  Google Scholar 

  13. E. Bourdin, P. Fauchais, and M.I. Boulos, Transient Heat Conduction under Plasma Conditions, Int. J. Heat Mass Transf., 1983, 26, p 567

    Article  Google Scholar 

  14. J.K. Fiszdon, Melting of Powder Grains in a Plasma Flame, Int. J. Heat Mass Transf., 1979, 22(5), p 749-761. doi:10.1016/0017-9310(79)90122-4

    Article  Google Scholar 

  15. J.A. Lewis and W.H. Gauvin, Motion of Particles Entrained in a Plasma Jet, AIChE J., 1973, 19(5), p 982-990. doi:10.1002/aic690190515

    Article  Google Scholar 

  16. N. Sayegh and W. Gauvin, Numerical Analysis of Variable Property Heat Transfer to a Single Sphere in High Temperature Surroundings, AIChE J., 1979, 25(3), p 523-534. doi:10.1002/aic.690250319

    Article  Google Scholar 

  17. R.M. Young and E. Pfender, Nusselt Number Correlations for Heat Transfer to Small Spheres in Thermal Plasma Flows, Plasma Chem. Plasma Process., 1987, 7(2), p 211-229. doi:10.1007/BF01019179

    Article  Google Scholar 

  18. M. Vardelle, A. Vardelle, P. Fauchais, and M.I. Boulos, Plasma—Particle Momentum and Heat Transfer: Modelling and Measurements, AlChE J., 1983, 9(2), p 236-243. doi:10.1002/aic.690290210

    Article  Google Scholar 

  19. X. Chen and E. Pfender, Effect of the Knudsen Number on Heat Transfer to a Particle Immersed into a Thermal Plasma, Plasma Chem. Plasma Process., 1983, 3(1), p 97. doi:10.1007/BF00566030

    Article  Google Scholar 

  20. P. Fauchais, Topical Review: Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37(9), p 86-108. doi:10.1088/0022-3727/37/9/R02

    Article  Google Scholar 

  21. D. Bhattacharya and W.H. Gauvin, Modeling of Heterogeneous Systems in a Plasma Jet Reactor. AIChE J. 21, 879-885 (1975). ISSN: 0001-1541

  22. P. Ptoulx, J. Mostaghimi, and M.I. Boulos, Plasma–Particle Interaction Effects in Induction Plasma Modeling under Dense Loading Conditions, Int. J. Heat Mass Transf., 1985, 28(7), p 1327-1336. doi:10.1016/0017-9310(85)90163-2

    Article  Google Scholar 

  23. D.K. Das and R. Sivakumar, Modeling of the Temperature and the Velocity of Ceramic Powder Particles in A Plasma Flame-I. Alumina, Acta Metall. Mater., 1990, 38(11), p 2187-2192. doi:10.1016/0956-7151(90)90086-V

    Article  Google Scholar 

  24. R. Westhoff, G. Trapaga, and J. Szekely, Plasma–Particle Interactions in Plasma Spraying Systems, Metall. Trans. B, 1992, 23, p 683-693. doi:10.1007/BF02656448

    Article  Google Scholar 

  25. A. Vardelle, N.J. Themelis, B. Dussoubs, M. Vardelle, and P. Fauchais, Transport and Chemical Rate Phenomena in Plasma Sprays, J. High Temp. Process., 1997, 1, p 295-314. doi:10.1615/HighTempMatProc.v1.i3.20

    Article  Google Scholar 

  26. Y.P. Wan, J.R. Fincke, S. Sampath, V. Prasad, and H. Herman, Modeling and Experimental Observation of Evaporation from Oxidizing Molybdenum Particles Entrained in a Thermal Plasma Jet, Int. J. Heat Mass Transf., 2002, 45(5), p 1007-1015. doi:10.1016/S0017-9310(01)00214-9

    Article  Google Scholar 

  27. K. Bobzin, N. Kopp, T. Warda, I. Petkovic, S. Zimmermann, K. Hartz-Behrend, K. Landes, G. Forster, S. Kirner, J.-L. Marqués, J. Schein, J. Prehm, K. Möhwald, and F.-W. Bach, Improvement of Coating Properties in Three-Cathode Atmospheric Plasma Spraying. J. Therm. Spray Technol. 22(4), 502-508 (2013). doi:10.1007/s11666-013-9902-2. Reprint: Proceedings International Thermal Spray Conference (ITSC 2012), May 21st-24th (Houston, USA), ASM International - Materials Park (Ohio), pp. 867-872. ISBN: 978-1632666796

  28. I. Petkovic, Modellierung und Simulation als Werkzeug zur Verbesserung des APS-Prozesses mittels Mehrlichtbogen-Plasmagenerator, Shaker-Verlag, RWTH Aachen, Dissertation, pp. 1-192

  29. E. Meillot and G. Balmigere, Plasma Spraying Modeling: Particle Injection in a Time-Fluctuating Plasma Jet, Surf. Coat. Technol., 2008, 202(18), p 4465-4469. doi:10.1016/j.surfcoat.2008.04.028

    Article  Google Scholar 

  30. Y.C. Lee and E. Pfender, Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas, Part III: Thermal Plasma Jet Reactors and Multiparticle Injection, Plasma Chem. Plasma Process., 1987, 7(1), p 1-27. doi:10.1007/BF01015997

    Article  Google Scholar 

  31. H.-P. Li and E. Pfender, Three Dimensional Modeling of the Plasma Spray Process, J. Therm. Spray Technol., 2007, 16(2), p 245-260. doi:10.1007/s11666-007-9023-x

    Article  Google Scholar 

  32. D.-Y. Xu, X.-C. Wu, and X. Chen, Motion and Heating of Non-spherical Particles in a Plasma Jet, Surf. Coat. Technol., 2003, 171(1-3), p 149-156. doi:10.1016/S0257-8972(03)00259-7

    Article  Google Scholar 

  33. K. Bobzin and M. Öte, Modelling Multi-Arc Spraying Systems, J. Therm. Spray Technol., 2016, 25(5), p 920-932. doi:10.1007/s11666-016-0407-7

    Article  Google Scholar 

  34. K. Bobzin, M. Öte, J. Schein, S. Zimmermann, K. Möhwald, and C. Lummer, Modeling the Plasma Jet in Multi-Arc Plasma Spraying, J. Therm. Spray Technol., 2016, 25(6), p 1111-1126. doi:10.1007/s11666-016-0438-0

    Article  Google Scholar 

  35. A. Burcat and B. Ruscic, Third Millenium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Argonne National Laboratory, Lemont, 2005, p 1-417

    Book  Google Scholar 

  36. M.A. Abdou, M.S. Tillack, A.R. Raffray, A.H. Hadid, J.R. Bartlit, C.E.C. Bell, P.J. Gierszewski, J.D. Gordon, T. Iizuka, and C.N. Kim, Modeling, Analysis and Experiments for Fusion Nuclear Technology. FNT progress report: Modeling and FINESSE (1987) (University of California in L.A.), UCLA-ENG-86-44, FG03-86ER52123

  37. Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials. Volume 4, Oxides and Their Solutions and Mixtures. Part 1. Simple Oxygen Compounds and Their Mixtures, Thermophysical and Electronic Properties Information Analysis Center, Lafayette, 1966

    Google Scholar 

  38. T. Zhang, D.T. Gawne, and B. Liu, Computer Modelling of the Influence of Process Parameters on the Heating and Acceleration of Particles During Plasma Spraying, Surf. Coat. Technol., 2000, 132(2-3), p 233-243. doi:10.1016/S0257-8972(00)00847-1

    Article  Google Scholar 

  39. H. Schlichting, Boundary Layer Theory, 6th ed., McGraw-Hill, New York, 1968, doi:10.1115/1.3601336

    Google Scholar 

  40. D.T. Gawne, B. Liu, Y. Bao, and T. Zhang, Modelling of Plasma–Particle Two-Phase Flow Using Statistical Techniques, Surf. Coat. Technol., 2005, 191(2-3), p 242-254. doi:10.1016/j.surfcoat.2004.02.032

    Article  Google Scholar 

  41. T.H. Ko and H.K. Chen, Three-Dimensional Isothermal Solid-Gas Flow and Deposition Process in a Plasma Spray Torch with Solid Shield: A Numerical Study, Surf. Coat. Technol., 2005, 200(7), p 2152-2164. doi:10.1016/j.surfcoat.2004.06.036

    Article  Google Scholar 

  42. G.A. Hughmark, Mass and Heat Transfer from Rigid Spheres, AIChE J., 1967, 13(6), p 1219-1221. doi:10.1002/aic.690130638

    Article  Google Scholar 

Download references

Acknowledgments

This paper is based on Chap. 4 of Understanding Multi-Arc Plasma Spraying (M. Öte, Shaker-Verlag, RWTH Aachen, Dissertation, ISBN: 978-3-8440-4598-7). All presented investigations were conducted in the context of the Collaborative Research Centre SFB1120 “Precision Melt Engineering” at RWTH Aachen University and funded by the German Research Foundation (DFG). We wish to express our sincere gratitude for this sponsorship and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Öte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobzin, K., Öte, M. Modeling Plasma–Particle Interaction in Multi-Arc Plasma Spraying. J Therm Spray Tech 26, 279–291 (2017). https://doi.org/10.1007/s11666-016-0514-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0514-5

Keywords

Navigation