Skip to main content

Advertisement

Log in

Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Pre-treatment of substrates is an important step in thermal spraying. It is widely accepted that mechanical interlocking is the dominant adhesion mechanism for most substrate-coating combinations. To prevent premature failure, minimum coating adhesion strength, surface preparation grades, and roughness parameters are often specified. For corrosion-protection coatings for offshore wind turbines, an adhesion strength ≥ 5 MPa is commonly assumed to ensure adhesion over service lifetime. In order to fulfill this requirement, Rz > 80 µm and a preparation grade of Sa3 are common specifications. In this study, the necessity of these requirements is investigated using the widely used combination of twin-wire arc-sprayed ZnAl15 on S355J2 + N as a test case. By using different blasting media and parameters, the correlation between coating adhesion and roughness parameters is analyzed. The adhesion strength of these systems is measured using a test method allowing measurements on real parts. The results are compared to DIN EN 582:1993, the European equivalent of ASTM-C633. In another series of experiments, the influence of surface pre-treatment grades Sa2.5 and Sa3 is considered. By combining the results of these three sets of experiments, a guideline for surface pre-treatment and adhesion testing on real parts is proposed for the considered system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Norwegian Oil Industry Association, NORSOK STANDARD—M-501 Surface Preparation and Protective Coating, Standards Norway, Lysaker, 2012

  2. A.W. Momber, P. Plagemann, and V. Stenzel, Performance and Integrity of Protective Coating Systems for Offshore Wind Power Structures After Three Years Under Offshore Site Conditions, Renew. Energy, 2015, 74, p 606-617

    Article  Google Scholar 

  3. K. Bobzin, M. Öte, T.F. Linke, and C. Schulz, Corrosion of Wire Arc Sprayed ZnMgAl, Mater. Corros., 2015, 66(6), p 520–526

    Article  Google Scholar 

  4. M. Büteführ and F. Prenger, Korrosionsverhalten von verschiedenen ZnAl Überzügen im maritimen Bereich: Ergebnisse von Langzeitauslagerungen, Dresden, 2015

  5. K. Bobzin, Oberflächentechnik für den Maschinenbau, 1st ed., 2013

  6. T. Maruyama and T. Kobayashi, Influence of Substrate Surface Roughness on Adhesive Property of Sprayed Coating, in International Thermal Spray Conference & Exhibition 2004—Conference Proceedings, Osaka, Japan, DVS-Verlag GmbH, Düsseldorf, 2004

  7. S. Paul, P.J. Aldhous, and H.L. de Villiers Lovelock, Effect of Blasting and Spraying Parameters on the Adhesion of Arc Wire Sprayed Aluminum Coatings, in Thermal Spray 2015: ITSC 2015—Proceedings of the International Thermal Spray Conference, Long Beach, Colifornien, USA, 2015, p 321-328

  8. D.J. Varacalle, D.P. Guillen, D.M. Deason, W. Rhodaberger, and E. Sampson, Effect of Grit-Blasting on Substrate Roughness and Coating Adhesion, J. Therm. Spray Technol., 2006, 15(3), p 348-355

    Article  Google Scholar 

  9. K. Bobzin, M. Öte, T.F. Linke, J. Sommer, and X. Liao, Influence of Process Parameter on Grit Blasting as a Pretreatment Process for Thermal Spraying, J. Therm. Spray Technol., 2016, 25(1), p 3–11

    Google Scholar 

  10. H. Begg, M. Riley, and H. de Villiers Lovelock, Mechanization of the Grit Blasting Process for Thermal Spray Coating Applications: A Parameter Study, J. Therm. Spray Technol., 2016, 25(1-2), p 12-20

    Article  Google Scholar 

  11. S. Salavati, T.W. Coyle, and J. Mostaghimi, Optimization of Grit-Blasting Process Parameters for Production of Dense Coatings on Open Pores Metallic Foam Substrates Using Statistical Methods, J. Therm. Spray Technol., 2015, 24(7), p 1246-1255

    Article  Google Scholar 

  12. M.H. Staia, E. Ramos, A. Carrasquero, A. Roman, J. Lesage, D. Chicot, and G. Mesmacque, Effect of substrate roughness induced by grit blasting upon adhesion of WC-17% Co thermal sprayed coatings, Thin Solid Films, 2000, 377–378, p 657-664

    Article  Google Scholar 

  13. R. Kromer, J. Cormier, and S. Costil, Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings, J. Therm. Spray Technol., 2016, 25(5), p 933-945

    Article  Google Scholar 

  14. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  Google Scholar 

  15. S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180

    Article  Google Scholar 

  16. L. de Chiffre, P. Lonardo, H. Trumpold, D.A. Lucca, G. Goch, C.A. Brown, J. Raja, and H.N. Hansen, Quantitative Characterisation of Surface Texture, CIRP Ann. Manuf. Technol., 2000, 49(2), p 635-652

    Article  Google Scholar 

  17. European Committee for Standardization, Thermisches Spritzen—Vorbehandeln von Oberflächen metallischer Werkstücke und Bauteile für das thermische Spritzen, 2010

  18. DVS, Merkblatt DVS 2312—Richtlinien für das thermische Spritzen von Kunststoffen, 2011

  19. DIN Deutsches Institut für Normung e.V., Thermisches Spritzen—Vorbehandlung von Oberflächen metallischer Werkstücke und Bauteile für das thermische Spritzen, Beuth Verlag GmbH, Berlin, 2010

  20. DIN Deutsches Institut für Normung e.V., Geometrische Produktspezifikation (GPS)—Oberflächenbeschaffenheit: Tastschnittverfahren—Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit, Beuth Verlag GmbH, Berlin, 2010

  21. DIN Deutsches Institut für Normung e.V., Abreißversuch zur Beurteilung der Haftfestigkeit, Beuth Verlag GmbH, Berlin, 2003

  22. DVS, Merkblatt DVS 2304—Checklisten zur Qualitätssicherung beim thermischen Spritzen, 2005

  23. T. Schläfer, Entwicklung von Verfahren zur Bestimmung der Haftzugfestigkeit von thermisch gespritzten Zylinderlaufbahnen. Techn. Hochsch., Diss.–Aachen, 2014, Shaker, Aachen, 2015

Download references

Acknowledgments

The authors would like to thank the research partners Grillo-Werke AG and Linde AG for their support in grit blasting and coating the samples within the first set of experiments concerning the substrate roughness variation. The authors also greatly acknowledge the financial support from the German Federal Ministry of Economics and Technology for the financial support of the research project KOKON (0325672 C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Knoch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobzin, K., Öte, M. & Knoch, M.A. Surface Pre-treatment for Thermally Sprayed ZnAl15 Coatings. J Therm Spray Tech 26, 464–472 (2017). https://doi.org/10.1007/s11666-016-0507-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0507-4

Keywords

Navigation