Skip to main content
Log in

Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Zhang, D. Sun, Y. Fu, and H. Du, Recent Advances of Superhard Nanocomposite Coatings: A Review, Surf. Coat. Technol., 2003, 167(2-3), p 113-119

    Article  Google Scholar 

  2. J. Musil, Hard and Superhard Nanocomposite Coatings, Surf. Coat. Technol., 2000, 125(1-3), p 322-330

    Article  Google Scholar 

  3. D.B. Witkin and E.J. Lavernia, Synthesis and Mechanical Behavior of Nanostructured Materials Via Cryomilling, Prog. Mater Sci., 2006, 51, p 1-60

    Article  Google Scholar 

  4. M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials Noyes Publications, William Andrew Publishing, Norwich, NY, 2001, p 1-113

    Google Scholar 

  5. L. Gao, X. Jin, H. Kawaoka, T. Sekino, and K. Niihara, Microstructure and Mechanical Properties of SiC-Mullite Nanocomposite Prepared by Spark Plasma Sintering, Mater. Sci. Eng. A, 2002, 334, p 262-266

    Article  Google Scholar 

  6. Z.Q. Jin, K.H. Chen, J. Li, H. Zeng, S.F. Cheng, J.P. Liu, Z.L. Wang, and N.N. Thadhani, Shock Compression Response of Magnetic Nanocomposite Powders, Acta Mater., 2004, 52(8), p 2147-2154

    Article  Google Scholar 

  7. A.N. Papyrin, A.P. Alkimov, and V.F. Kosarev. Experimental Study of Interaction of Supersonic Gas Jet with a Substrate Under Cold Spray Process, Proc. International Thermal Spray Conf., 2001, p 423-431

  8. A.N. Papyrin, V.F. Kosarev, and S.V. Klinkov, On the Interaction of High Speed Particles with a Substrate Under the Cold Spraying, Proc. International Thermal Spray Conf., 2002, p 380-384

  9. R.S. Lima, J. Karthikeyan, and C.M. Kay, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416(1-2), p 129-135

    Article  Google Scholar 

  10. H.J. Kim, C.H. Lee, and S.Y. Hwang, Fabrication of WC-Co Coatings by Cold Spray Deposition, Surf. Coat. Technol., 2005, 191(2-3), p 335-341

    Article  Google Scholar 

  11. P.H. Gao, C.-J. Li, G.J. Yang, Y.G. Li, and C.X. Li, Influence of Substrate Hardness Transition on Built-Up of Nanostructured WC-12Co by Cold Spraying, Appl. Surf. Sci., 2010, 256(7), p 2263-2268

    Article  Google Scholar 

  12. X.T. Luo, G.J. Yang, C.-J. Li, and K. Kondoh, High Strain Rate Induced Localized Amorphization in Cubic BN/NiCrAl Nanocomposite Through High Velocity Impact, Scr. Mater., 2011, 65(7), p 581-584

    Article  Google Scholar 

  13. X.T. Luo, G.J. Yang, and C.-J. Li, Multiple Strengthening Mechanisms of Cold Sprayed cBNp/NiCrAl Composite Coating, Surf. Coat. Technol., 2011, 205(20), p 4808-4813

    Article  Google Scholar 

  14. X.T. Luo and C.-J. Li, Thermal Stability of Microstructure and Hardness of Cold-Sprayed cBN/NiCrAl Nanocomposite Coating, J. Therm. Spray Technol., 2012, 21(3-4), p 578-585

    Article  Google Scholar 

  15. X.T. Luo, C.-J. Li, and G.J. Yang, Correlations Between Milling Conditions and Iron Contamination, Microstructure and Hardness of Mechanically Alloyed Cubic BN Particle Reinforced NiCrAl Matrix Composite Powders, J. Alloys compd., 2013, 548, p 180-187

    Article  Google Scholar 

  16. X.T. Luo, G.J. Yang, and C.-J. Li, Preparation of cBNp/NiCrAl Nanostructured Composite Powders by a Step-fashion Mechanical Alloying Process, Powder Technol., 2012, 217, p 591-598

    Article  Google Scholar 

  17. J. Li and C. Ding, Determining Microhardness and Elastic Modulus of Plasma-Sprayed Cr3C2-NiCr Coatings Using Knoop Indentation Testing, Surf. Coat. Technol., 2001, 135(2-3), p 229-237

    Article  Google Scholar 

  18. M.M. Lima, C. Godoy, J.C. Avelar-Batista, and P.J. Modenesi, Toughness Evaluation of HVOF WC-Co Coatings Using Non-Linear Regression Analysis, Mater. Sci. Eng. A, 2003, 357(1-2), p 337-345

    Article  Google Scholar 

  19. G.K. Williamson and W.H. Hall, X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22-31

    Article  Google Scholar 

  20. H.X. Hu, S.L. Jiang, Y.S. Tao, T.Y. Xiong, and Y.G. Zheng, Cavitation Erosion and Jet Impingement Erosion Mechanism of Cold Sprayed Ni-Al2O3 Coating, Nucl. Eng. Des., 2011, 241(12), p 4929-4937

    Article  Google Scholar 

  21. Q. Wang, N. Birbilis, H. Huang, and M.X. Zhang, Microstructure Characterization and Nanomechanics of Cold-Sprayed Pure Al and Al-Al2O3 Composite Coatings, Surf. Coat. Technol., 2013, 232(15), p 216-223

    Article  Google Scholar 

  22. C. Feng, V. Guipont, M. Jeandin, O. Amsellem, F. Pauchet, R. Saenger, S. Bucher, and C. Iacob, B4C/Ni Composite Coatings Prepared by Cold Spray of Blended or CVD-Coated Powders, J. Therm. Spray Technol., 2012, 21(3-4), p 561-570

    Article  Google Scholar 

  23. N.M. Melendez and A.G. McDonald, Development of WC-Based Metal Matrix Composite Coatings Using Low-Pressure Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2013, 214, p 101-109

    Article  Google Scholar 

  24. H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, and P. Vuoristo, High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties, J. Therm. Spray Technol., 2012, 21(5), p 1065-1075

    Article  Google Scholar 

  25. J.M. Shockley, H.W. Strauss, R.R. Chromik, N. Brodusch, R. Gauvin, E. Irissou, and J.G. Legoux, In Situ Tribometry of Cold-Sprayed Al-Al2O3 Composite Coatings, Surf. Coat. Technol., 2013, 215, p 350-356

    Article  Google Scholar 

  26. E. Irissou, J.G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 661-668

    Article  Google Scholar 

  27. E. Sansoucy, P. Marcoux, L. Ajdelsztajn, and B. Jodoin, Properties of SiC-Reinforced Aluminum Alloy Coatings Poduced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2008, 202(6), p 3988-3996

    Article  Google Scholar 

  28. K. Spencer, D.M. Fabijanic, and M.X. Zhang, The Influence of Al2O3 Reinforcement on the Properties of Stainless Steel Cold Spray Coatings, Surf. Coat. Technol., 2012, 206(14), p 3275-3282

    Article  Google Scholar 

  29. M. Jafari, M.H. Enayati, M. Salehi, S.M. Nahvi, and C.G. Park, Microstructural and Mechanical Characterizations of a Novel HVOF-Sprayed WC-Co Coating Deposited from Electroless Ni-P Coated WC-12Co Powders, Mater. Sci. Eng. A, 2013, 578, p 46-53

    Article  Google Scholar 

  30. S.B. Pitchuka, B. Basu, and G. Sundararajan, A Comparison of Mechanical and Tribological Behavior of Nanostructured and Conventional WC-12Co Detonation-Sprayed Coatings, J. Therm. Spray Technol., 2013, 4(22), p 478-490

    Article  Google Scholar 

  31. E. Orowan, The Physical Basis of Adhesion, J. Frankl. Inst., 1970, 290(6), p 493-512

    Article  Google Scholar 

  32. V. Richter and M.V. Ruthendorf, On Hardness and Toughness of Ultrafine and Nanocrystalline Hard Materials, Int. J. Refract. Met. Hard Mater., 1999, 17(1-3), p 141-152

    Article  Google Scholar 

  33. C.-J. Li, W.Y. Li, and Y.Y. Wang, Formation of Metastable Phases in Cold-Sprayed Soft Metallic Deposit, Surf. Coat. Technol., 2005, 198(1-3), p 469-473

    Article  Google Scholar 

  34. K.H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scr. Mater., 2008, 59(7), p 768-771

    Article  Google Scholar 

  35. Y. Zou, W. Qin, E. Irissou, J.G. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scr. Mater., 2009, 61(9), p 899-902

    Article  Google Scholar 

  36. J.H. Schneibel, Processing, Properties, and Applications of Iron Ahuninides, The Minerals, Metals & Materials Society, Warrendale, PA, 1994, p 329

    Google Scholar 

  37. M.P. D’Evelyn and K. Zgonc, Elastic Properties of Polycrystalline Cubic Boron Nitride and Diamond by Dynamic Resonance Measurements, Diam. Relat. Mater., 1997, 6(5-7), p 812-816

    Article  Google Scholar 

  38. L.L. Shaw, J. Villegas, J.Y. Huang, and S. Chen, Strengthening Via Deformation Twinning in a Nickel Alloy, Mater. Sci. Eng. A, 2008, 480, p 75-83

    Article  Google Scholar 

  39. T. Sahraoui, S. Guessasma, M.A. Jeridane, and M. Hadji, HVOF Sprayed WC-Co Coatings: Microstructure, Mechanical Properties and Friction Moment Prediction, Mater. Des., 2010, 31(3), p 1431-1437

    Article  Google Scholar 

  40. E. Rabinowicz, Friction and Wear of Materials, John Wiley and Sons, New York, 1965, p 168-169

    Google Scholar 

  41. J.F. Archard, Wear Theory and Mechanisms, Wear Control Handbook, American Society of Mechanical Engineers, New York, 1980, p 35-80

    Google Scholar 

  42. J. Pirso, M. Viljus, K. Juhani, and S. Letunovitš, Two-Body Dry Abrasive Wear of Cermets, Wear, 2009, 266(1-2), p 21-29

    Article  Google Scholar 

  43. P.W. Leech and X.S. Li, Comparison of Abrasive Wear in Diamond Composites and WC-Based Coatings, Wear, 2011, 271(9-10), p 1244-1251

    Article  Google Scholar 

Download references

Acknowledgment

The project is supported by the National Science Found for Distinguish Young Scholar (No. 50725101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tao Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, XT., Yang, EJ., Shang, FL. et al. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating. J Therm Spray Tech 23, 1181–1190 (2014). https://doi.org/10.1007/s11666-014-0092-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0092-3

Keywords

Navigation