Skip to main content
Log in

Characterization of TiO2-Doped Yttria-Stabilized Zirconia (YSZ) for Supercritical Water-Cooled Reactor Insulator Application

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, TiO2-doped YSZ samples were tested in supercritical water (SCW) to evaluate their corrosion behavior. The doped samples were produced by mechanically alloying standard 7 wt.% Y2O3-ZrO2 with 5, 10, and 15 wt.% of TiO2 first. The bulk sample pieces were then obtained using plasma spraying of the alloyed powder materials followed by sintering. The results showed that the weight changes for 5TiYSZ and 10TiYSZ after 1000 h of exposure in SCW were negligible and the sample surfaces did not exhibit any indication of corrosion. In comparison to the reference materials (Al2O3 and 7YSZ) processed using the same method, the rate of weight change followed the order of Al2O3 > 7YSZ, 15TiYSZ > 10TiYSZ > 5TiYSZ. As several TiO2-doped 7SYZ compositions also display increased fracture toughness and reduced thermal conductivity, they may be considered as potential candidates for thermal insulation in a SCW-cooled nuclear reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Richard, J. Poirier, C. Reverte, C. Aymonier, A. Loppinet-Seranic, G. Iskender, E. Pablo, and F. Marias, Corrosion of Ceramics for Vinasse Gasification in Supercritical Water, J. Eur. Ceram. Soc., 2012, 32, p 2219-2233

    Article  CAS  Google Scholar 

  2. M. Schacht, N. Boukis, and E. Dinjus, Corrosion of Alumina Ceramics in Acidic Aqueous Solutions at High Temperatures and Pressures, J. Mater. Sci., 2000, 35, p 6251-6258

    Article  CAS  Google Scholar 

  3. C. Chow and H. Khartabil, Conceptual Fuel Channel Designs for CANDU-SCWR, Nucl. Eng. Technol., 2007, 40(2), p 139-146

    Article  Google Scholar 

  4. S. Baindur, Materials Challenges for the Supercritical Water Cooled Reactor (SCWR), Bull. Can. Nucl. Soc., 2008, 29(1), p 32-38

    Google Scholar 

  5. L. Leung, Canada’s Super-Critical Water-cooled Reactor Design Concept, Phase-II NSERC/NRCan/AECL Gen-IV Energy Technologies Program Kick-Off Meeting, Saskatoon, Canada, June 14, 2012

  6. C. Chow and H.F. Khartabil, Conceptual Fuel Channel Designs for CANDU – SCWR, Nucl. Eng. Technol., 2007, 40(2), p 139-146

    Article  Google Scholar 

  7. P. Kritzer, Corrosion in High-Temperature and Supercritical Water and Aqueous Solutions: A Review, J. Supercrit. Fluids, 2004, 29, p 1-29

    Article  CAS  Google Scholar 

  8. Y.-J. Kim and P.L. Andresen, Application of Insulated Protective Coatings for Reduction of Corrosion Potential of Type 304 Stainless Steel in High-Temperature Water, Corrosion, 1998, 54(12), p 1012-1017

    Article  CAS  Google Scholar 

  9. D.A. Guzonas, J.S. Wills, G.A. McRae, S. Sullivan, K. Chu, K. Heaslip, and M. Stone, 12th International Conference on Environmental Degradation of Materials in Nuclear Systems – Water Reactors, Salt Lake City, 14-18 August 2005

  10. J. Wills, D.A Guzonas, and A. Chiu, 28th Annual CNS Conference, Saint John, 2007

  11. C. Sun, R. Hui, W. Qu, and S. Yick, Progress in Corrosion Resistant Materials for Supercritical Water Reactors, Corros. Sci., 2009, 51, p 2508-2523

    Article  CAS  Google Scholar 

  12. X. Yi, A. Yamauchi, K. Kurokawa, and T. Akiyama, Corrosion of Combustion-Synthesized β-SiAlONs in Supercritical Water, Corros. Sci., 2012, 56, p 153-157

    Article  CAS  Google Scholar 

  13. C. Sun, Y. Xie, P. Yao, L. Zhang, J. Miles, W. Cook and R. Hui, 2nd Canada-China Joint Workshop on SCWR (CCSC-2010), Toronto, ON, Canada, 25-28 April 2010.

  14. N. Boukis, N. Claussen, K. Ebert, R. Janssen, and M. Schacht, Corrosion Screening Tests of High-Performance Ceramics in Supercritical Water Containing Oxygen and Hydrochloric Acid, J. Eur. Ceram. Soc., 1997, 17(1), p 71-76

    Article  CAS  Google Scholar 

  15. B. Savoini, D. Cáceres, I. Vergara, R. González, and J.E. Santiuste, Radiation Damage in Neutron-Irradiated Yttria-Stabilized-Zirconia Single Crystals, J. Nucl. Mater., 2000, 277(2-3), p 199-203

    Article  CAS  Google Scholar 

  16. T. Hojo, J. Aihara, K. Hojou, S. Furuno, H. Yamamoto, N. Nitani, T. Yamashita, K. Minato, and T. Sakuma, Irradiation Effects on Yttria-Stabilized Zirconia Irradiated with Neon Ions, J. Nucl. Mater., 2003, 319, p 81-86

    Article  CAS  Google Scholar 

  17. K.E. Sickafus, H. Matzke, K. Yasuda, P. Chodak, III, R.A. Verrall, P.G. Lucuta, H.R. Andrews, A. Turos, R. Fromknecht, and N.P. Baker, Radiation Damage Effects in Cubic-Stabilized Zirconia Irradiated with 72 MeV I+ Ions, Nucl. Instrum. Methods Phys. Res. B, 1998, 141(1-4), p 358-365

    Article  CAS  Google Scholar 

  18. C. Degueldre and Ch. Hellwig, Study of a Zirconia Based Inert Matrix Fuel Under Irradiation, J. Nucl. Mater., 2003, 320(1-2), p 96-105

    Article  CAS  Google Scholar 

  19. M. Kibsey, J. Romualdez, X. Huang, R. Kearsey, and Q. Yang, Mechanical Properties of Titania-Doped Yttria Stabilized Zirconia (TiYSZ) for Use as Thermal Barrier Coating (TBC), ASME J. Eng. Gas Turbines Power, 2011, 133(12), p 122101-122110

    Article  Google Scholar 

  20. J. Romualdez, M. Kibsey, X. Huang, and R. Kearsey, Thermal Properties and Phase Analysis of Titania Doped Yttria-Zirconia Ceramics for Use as High Temperature Thermal Barrier Coatings (TBCs), Turbo Expo 2011, Paper No. GT2011-45054, Vancouver, June 2010

  21. T.A. Schaedler, R.M. Leckie, S. Krämer, A.G. Evans, and C.G. Levi, Toughening of Nontransformable t′-YSZ by Addition of Titania, J. Am. Ceram. Soc., 2007, 90(12), p 3896-3901

    CAS  Google Scholar 

  22. F. Gao, X. Huang, Q. Yang, and R. Liu, Optimization and Prediction of Plasma Spray Process by Taguchi Method, J. Therm. Spray, 2012, 21(1), p 176-186

    Google Scholar 

  23. T.A. Schaedler, O. Fabrichnaya, and C.G. Levi, Phase Equilibria in the TiO2-YO1.5-ZrO2 system, J. Eur. Ceram. Soc., 2008, 28, p 2509-2520

    Article  CAS  Google Scholar 

  24. M.O. Jarligo, G. Mauer, D.E. Mack, R. Vaßen, and D. Stöver, Proceedings of the 25th International Conference on Surface Modification Technologies (SMT 25), T.S. Sudarshan and P. Nylén, Ed., June 20-22, 2011, Valardocs, Trollhättan, Sweden, January 2012, p 165-173

  25. T. Kawabe, M. Hanazono, Y. Sono, M. Waki, and S. Hara, Proceedings of the Symposium on Dielectric Films on Compound Semiconductors, Honolulu, HI, USA, Oct. 18-23, 1988, p 217-222

Download references

Acknowledgment

Financial support for material and test equipment was provided by the NSERC/NRCAN/AECL under a NSERC CRD research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, F., Huang, X. & Guzonas, D. Characterization of TiO2-Doped Yttria-Stabilized Zirconia (YSZ) for Supercritical Water-Cooled Reactor Insulator Application. J Therm Spray Tech 22, 734–743 (2013). https://doi.org/10.1007/s11666-013-9911-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9911-1

Keywords

Navigation