Skip to main content

Advertisement

Log in

Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The paper presents an investigation of a unit of annular injection of powder materials into a thermal plasma flow. The unit is designed for the electric-arc direct-current plasma torch with a sectioned inter-electrode insert up to 100 kW, which was developed earlier. Energy characteristics (thermal efficiency and thermal power of the plasma jet) and spectra of plasma torch current and voltage fluctuations are described. The characteristics of the radial temperature distribution in the plasma jet in the annular and point powder injection cases are compared. A multi-channel spectrometer with a photo-diode array was implemented for the measurements. It is shown that, in contrast to point injection of powder particles, which is carried out across the jet on the nozzle exit, distributed annular injection with gas-dynamic focusing provides a dense axisymmetric heterogeneous flow, in which almost all particles pass through a high-temperature and high-speed area near the plasma jet axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

T :

Temperature

h :

Planck constant

k :

Boltzmann constant

c :

Light velocity in vacuum

x, y :

Coordinates in the Cartesian system of coordinates (mm)

R :

Radius of the plasma jet boundary (mm)

r = (x 2 + y 2)1/2, 0 ≤ r ≤ R :

Radius in the cylindrical system of coordinates (mm)

Q(T):

Emissivity of a unit volume (W/m3)

A ik :

Probability of electron transition from the ith to kth level (s−1)

G(T):

Statistical sum

E :

Excitation energy (J)

I(y):

Radiation intensity (W/m2)

F :

Oscillator strength

g :

Top-level statistical weight

n(T):

Concentration of atoms per unit volume (m−3)

λ:

Wavelength of the line under consideration (Å)

References

  1. F.E. Beretta and E. Vassallo, Design Criteria for Integrated Injection Systems in a d.c. Plasma Source, Proceedings of 14th International Symposium on Plasma Chemistry, 2-6 August 1999 (Prague, Czech Republic), Vol. V, p 2429-2434

  2. P. Fauchais and M. Vardelle, Sensors in Spray Processes, J. Therm. Spray Technol., 2010, 19(4), p 668-694

    Article  CAS  Google Scholar 

  3. L. An, Y. Gao, and T. Zhang, Effect of Powder Injection Location on Ceramic Coatings Properties When Using Plasma Spray, J. Therm. Spray Technol., 2007, 16(5-6), p 967-973

    Article  Google Scholar 

  4. G. Mauer, R. Vassen, D. Stover, S. Kirner, J.-L. Marques, S. Zimmermann, G. Forster, and J. Schein, Improving Powder Injection in Plasma Spraying by Optical Diagnostics of the Plasma and Particle Characterization, J. Therm. Spray Technol., 2011, 20(1-2), p 3-11

    Article  Google Scholar 

  5. V.S. Klubnikin, “Electrothermal Plasma Devices and Processes of Powder Materials Spraying,” Post-Doc Thesis, Kalinin LPI, Leningrad, 1985, 447 pp (in Russian)

  6. P. Mohanty, J. Stanisic, J. Stanisic, A. George, and Y. Wang, A Study on Arc Instability Phenomena of an Axial Injection Cathode Plasma Torch, J. Therm. Spray Technol., 2009, 19(1-2), p 465-475

    Article  Google Scholar 

  7. O.P. Solonenko, A.V. Smirnov, and A.L. Sorokin, Interphase Momentum and Heat Exchange in Turbulent Dust-Laden Plasma Jet Under Continuous Radial Powder Injection, Flow Dynamics: The Second International Conference on Flow Dynamics, M. Takuyama and S. Maruyama, Ed., 16-18 November 2005, AIP Conference Proceedings (Malville, New York), Vol. 32, 2006, p 375-382

  8. S.A. Yermakov, M.V. Karasyov, V.S. Klubnikin, V.M. Maslennikov, N.A. Sosnin, P.A. Topolyanski, and S.Yu. Fyodorov, The Method of Plasma Treatment and the Plasma Torch, Patent WO 90/12123, 1990 (in Russian)

  9. J.F. Coudert, M.P. Planche, and P. Fauchais, Characterization of d.c Plasma Torch Voltage Fluctuations, Plasma. Chem. Plasma Process., 1996, 16(1), p 2115-2275

    Google Scholar 

  10. C. Baudry, A. Vardelle, G. Mariaux, C. Delalondre, and E. Meillot, Three-Dimensional and Time-Dependent Model of the Dynamic Behavior of the Arc in a Plasma Spray Torch, ITSC04 Proceedings, 2004 (Osaka, Japan), 2004

  11. J.F. Bisson, B. Gauthier, and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Therm. Spray Technol., 2003, 12(1), p 38-43

    Article  CAS  Google Scholar 

  12. E. Nogues, P. Fauchais, M. Vardelle, and P. Granger, Relation Between the Arc-Root Fluctuations, the Cold Boundary Layer Thickness and the Particle Thermal Treatment, J. Therm. Spray Technol., 2007, 16(5-6), p 919-926

    Article  Google Scholar 

  13. V.I. Kuz’min, A.A. Mikhal’chenko, E.V. Kartaev, and N.A. Rudenskaya, The Annular Injection Unit of Disperse Materials in Thermal Plasma Flow, 24-th International Conference on Surface Modification Technologies (SMT-24), Abstracts, 2010 (Dresden, Germany), 2010, p 135-137

  14. M.F. Zhukov, I.M. Zasypkin, A.N. Timoshevski, B.I. Mikhailov, and G.A. Desyatkov, Thermal Plasma Torches. Design, Characteristics, Applications. Cambridge International Science Publishing, Cambridge, 2007, 596 pp

  15. V.I. Nalivaiko, P.A. Chubakov, A.N. Pokrovsky, A.A. Mikhal’chenko, V.I. Kuz’min, and E.V. Kartaev, Small-Size Spectrometer for Emission Analysis of Low-Temperature Plasma Flow, Thermophys. Aeromech., 2007, 14(2), p 247-256

    Article  Google Scholar 

  16. W. Lochte-Holtgreven, Ed., Plasma Diagnostics. North-Holland Publishing Company, Amsterdam, 1968

  17. P. Frugier, C. Girold, S. Megy, C. Vandensteendam, E.A. Ershov-Pavlov, and J.-M. Baronnet, OES Use and Vaporization Modeling for Fly-Ash Plasma Vitrification, Plasma. Chem. Plasma Process., 2000, 20(1), p 65-86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kartaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz’min, V.I., Mikhal’chenko, A.A., Kovalev, O.B. et al. Technique of Formation of an Axisymmetric Heterogeneous Flow During Thermal Spraying of Powder Materials. J Therm Spray Tech 21, 159–168 (2012). https://doi.org/10.1007/s11666-011-9701-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9701-6

Keywords

Navigation