Skip to main content
Log in

Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

d DC :

DC nozzle diameter (mm)

d p :

particle diameter (μm)

p :

operating pressure (kPa)

Q c :

central gas flow rate (NL/min)

Q car :

particle carrier gas flow rate (NL/min)

Q sw :

swirling sheath gas flow rate (NL/min)

T g :

gas temperature (K)

T m :

melting point of Al2O3 (K)

T p :

particle temperature (K)

V p :

particle velocity (m/s)

ΦHe :

helium percentage (%)

References

  1. T. Yoshida, T. Tani, H. Nishimura, and K. Akashi, Characterization of a Hybrid Plasma and Its Application to Chemical Synthesis, J. Appl. Phys., 1983, 54(2), p 640-646

    Article  CAS  Google Scholar 

  2. K.S. Kim, J.H. Seo, J.S. Nam, W.T. Ju, and S.H. Hong, Production of Hydrogen and Carbon Black by Methane Decomposition Using DC-RF Hybrid Thermal Plasmas, IEEE Trans. Plasma Sci., 2005, 33(2), p 813-823

    Article  CAS  Google Scholar 

  3. J.W. McKelliget and N. El-Kaddah, Modeling of Materials Synthesis in Hybrid Plasma Reactors: Production of Silicon by Thermal Decomposition of SiCI4, Metall. Trans. B, 1990, 21(3), p 589-598

    Article  Google Scholar 

  4. J.H. Seo, J.M. Park, and S.H. Hong, Influence of DC Arc Jets on Flow Fields Analyzed by an Integrated Numerical Model for a DC-RF Hybrid Plasma, Plasma Sources Sci. Technol., 2008, 17(2), p 025011

    Article  Google Scholar 

  5. K. Kawajiri, T. Sato, and H. Nishiyama, Experimental Analysis of a DC-RF Hybrid Plasma Flow, Surf. Coat. Technol., 2003, 171(1-3), p 134-139

    Article  CAS  Google Scholar 

  6. K. Kawajiri, K. Ramachandran, and H. Nishiyama, Statistical Optimization of a DC-RF Hybrid Plasma Flow System for In-flight Particle Treatment, Int. J. Heat Mass Transfer, 2005, 48(1), p 183-190

    Article  Google Scholar 

  7. K. Kawajiri and H. Nishiyama, In-flight Particle Characteristics in a DC-RF Hybrid Plasma Flow System, Thin Solid Films, 2006, 506-507, p 660-664

    Article  CAS  Google Scholar 

  8. R. Ye, J.-G. Li, and T. Ishigaki, Controlled Synthesis of Alumina Nanoparticles Using Inductively Coupled Thermal Plasma with Enhanced Quenching, Thin Solid Films, 2007, 515(9), p 4251-4257

    Article  CAS  Google Scholar 

  9. H. Nishiyama, M. Onodera, J. Igawa, and T. Nakajima, Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power, J. Therm. Spray Technol., 2009, 18(4), p 593-599

    Article  CAS  Google Scholar 

  10. R. Ye, T. Ishigaki, J. Jurewicz, P. Proulx, and M.I. Boulos, In-flight Spheroidization of Alumina Powders in Ar-H2 and Ar-N2 Induction Plasmas, Plasma. Chem. Plasma Process., 2004, 24(4), p 555-571

    Article  CAS  Google Scholar 

  11. O. Kovářík, X. Fan, and M. Boulos, In Flight Properties of W Particles in an Ar-H2 Plasma, J. Therm. Spray Technol., 2007, 16(2), p 229-237

    Article  Google Scholar 

  12. J. Wua, H. Fnaga, S. Yoon, H. Kim, and C. Lee, Measurement of Particle Velocity and Characterization of Deposition in Aluminum Alloy Kinetic Spraying Process, Appl. Surf. Sci., 2005, 252(5), p 1368-1377

    Article  Google Scholar 

  13. O. Chumak, T. Kavka, and M. Hrabovský, Characterization of Plasma Jet Structure and Fluctuations by Statistic Processing of Photographic Images, IEEE Trans. Plasma Sci., 2008, 36, p 1062-1063

    Article  Google Scholar 

  14. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Vol 1, Plenum Press, New York, 1994

    Google Scholar 

Download references

Acknowledgments

We would like to give our sincere thanks to Mr. K. Katagiri and Mr. N. Ito with our institute for his eager technical support. This research was partially supported by Grant-in-Aid for Scientific Research (A) (2005-2007) from the Japan Society for the Promotion of Science and a GCOE program Grant (2008-2013) of world center of education and research for transdisciplinary flow dynamics from the Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemasa Takana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takana, H., Jang, J., Igawa, J. et al. Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture. J Therm Spray Tech 20, 432–439 (2011). https://doi.org/10.1007/s11666-010-9547-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-010-9547-3

Keywords

Navigation