Skip to main content
Log in

Modeling of Thermal Spraying Heat Transfer Processes by Exodus Stochastic Method

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This article deals with the application of the stochastic Exodus method for modelling of thermal spraying heat transfer processes and for solving direct and indirect problems. The Exodus stochastic method has an advantage in straightforward solving of the transient inverse heat transfer multi-dimensional problems over other methods based on iterative fittings procedures used for example by finite element methods (FEM). Theoretical background of the method is introduced. Application capabilities of the method are shown on the example of high velocity oxygen fuel thermal spraying heat transfer process analysis. Comparisons with results of FEM computational method application are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity (m2 s−1)

b :

transition probability (−)

B :

transition probabilities matrix (−)

Bi :

Biot number (−)

c :

Heat capacity (J kg−1 K−1)

f :

Surface temperature (K)

Fo :

Fourier number (−)

h :

distance to neighboring node (m)

L :

characteristic length (−)

n :

number of nodes (−)

n :

dimensionless distances to neighboring node (−)

p :

random walk probability (−)

P :

random walk probability matrix (−)

t :

temperature (K)

δFo :

step of Fourier number (−)

Δτ:

time step (s)

λ:

thermal conductivity (W m−1 K−1)

ρ:

density (kg m−3)

τ:

time (s)

abs:

absorption

refl:

reflection

A:

relating to absorbing nodes

N:

relating to non-absorbing nodes

FEM:

finite element method

HVOF:

high velocity oxygen fuel

References

  1. P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, 37, p R86-R108

    Article  CAS  ADS  Google Scholar 

  2. D. Cheng, G. Trapaga, J.W. McKelliget, and E.J. Lavernia, Mathematical Modelling of High Velocity Oxygen Fuel Thermal Spraying of Nanocrystalline Materials: An Overview, Modelling Simul. Mater. Sci. Eng., 2003, 11, p R1-R31

    Article  CAS  ADS  Google Scholar 

  3. M. Honner, P. Cerveny, V. Franta, and F. Cejka, Heat Transfer During HVOF Deposition, Surf. Coat. Technol., 1998, 106, p 94-99

    Article  CAS  Google Scholar 

  4. O.M. Alifanov, E.A. Artyukhin, and S.V. Rumyantsev, Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, 1995

    MATH  Google Scholar 

  5. J.J. Gonzalez, P. Freton, M. Masquere, X. Franceries, and F. Lago, Plasma Heat Transfer: Inverse Methods for Optimizing the Measurements, J. High Temp. Mater. Processes, 2005, 9(4), p 599-605

    Article  Google Scholar 

  6. R.W. Lewis, P. Nithiarasu, and K. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow, Wiley, New York, 2004

    Book  Google Scholar 

  7. J. Mackerle, Coatings and Surface Modification Technologies: A Finite Element Bibliography (1995–2005), Modelling Simul. Mater. Sci. Eng., 2005, 13, p 935-979

    Article  CAS  ADS  Google Scholar 

  8. J. Sladek, V. Sladek, and Y.C. Hon, Inverse Heat Conduction Problems by Meshless Local Petrov–Galerkin Method, Eng. Anal. Bound. Elem., 2006, 30, p 650-661

    Article  Google Scholar 

  9. A. Haji-Sheikh, The Monte Carlo Method, Handbook of Numerical Heat Transfer, W.J. Minkowytz, E.M. Sparrow, G.E. Schneider, and R.H. Pletcher, Ed., Wiley, New York, 1988, p 673-722

  10. A.F. Emery and W.W. Carson, A Modification to the Monte Carlo Method—The Exodus Method, J. Heat Transf., 1968, 90, p 328-332

    Google Scholar 

  11. J.G. Kemeny and J.L. Snell, Finite Markov Chains, D. Van Nostrand Co., Inc., Princeton, NJ, 1960, p 69-94

    MATH  Google Scholar 

  12. M.N.O. Sadiku, S.O. Ajose, and Z. Fu, Applying the Exodus Method to Solve Poisson’s Equation, IEEE Trans. Microwave Theory Tech., 1994, 42(4), p 661-666

    Article  Google Scholar 

  13. M.N.O. Sadiku and D.T. Hunt, Solution of Dirichlet Problems by the Exodus Method, IEEE Trans. Microwave Theory Tech., 1992, 40(1), p 89-95

    Article  Google Scholar 

Download references

Acknowledgment

This paper is based upon work sponsored by the Ministry of Education, Youth and Sports of the Czech Republic under research project no. MSM4977751302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Honner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honner, M., Sroub, J. Modeling of Thermal Spraying Heat Transfer Processes by Exodus Stochastic Method. J Therm Spray Tech 18, 1014–1021 (2009). https://doi.org/10.1007/s11666-009-9368-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-009-9368-4

Keywords

Navigation