Skip to main content
Log in

A Co-Condensation Model for In-Flight Synthesis of Metal-Carbide Nanoparticles in Thermal Plasma Jet

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

We present a theoretical analysis of the formation, growth, and transport of two-component nanoparticles in thermal plasma jet. The approach of the aerosol science and the idea of multicomponent co-condensation are employed for the analysis. The processes of homogeneous nucleation, heterogeneous growth, and coagulations due to Brownian collisions are considered in combination with the convective and diffusive transport of particles and the reacting gases within an axisymmetric domain. As a particular example, the authors study multicomponent co-condensation of metal-carbide nanoparticles from various precursors in a DC plasma gun operating in an argon atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.M. Goortani, P. Proulx, S. Xue, N.Y. Mendoza-Gonzalez, Controlling Nanostructure in Thermal Plasma Processing: Moving from Highly Aggregated Porous Structure to Spherical Silica Nanoparticles, Powder Technol., 2007, 175, p 22-32

    Article  CAS  Google Scholar 

  2. T. Ishigaki, S.-M. Oh, J.-G. Li, D.-W. Park, Controlling the Synthesis of TaC Nanopowders by Injecting Liquid Precursor into RF Induction Plasma, Sci. Technol. Adv. Mater., 2005, 6, p 111-118

    Article  CAS  Google Scholar 

  3. S.-M. Oh, M. Cappelli, D.-W. Park, Preparation of Nano-Sized Silicon Carbide Powder Using Thermal Plasma, Korean J. Chem. Eng., 2002, 19(5), pp 903-907

    Article  CAS  Google Scholar 

  4. R. Ye, J.-G. Li, T. Ishigaki, Controlled Synthesis of Alumina Nanoparticles Using Inductively Coupled Thermal Plasma with Enhanced Quenching, Thin Solid Films, 2007, 515, p 4251-4257

    Article  ADS  CAS  Google Scholar 

  5. M. Desilets, J.-F. Bilodeau, P. Proulx, Modelling of the Refractive Synthesis of Ultra-Fine Powders in a Thermal Plasma Reactor, J. Phys. D: Appl. Phys., 1997, 30, p 1951-1960

    Article  ADS  CAS  Google Scholar 

  6. J.S. McFeaters, R.L. Stephens, P. Schwerdtfeger, M. Liddell, Numerical Modeling of Titanium Carbide Synthesis in Thermal Plasma Reactors, Plasma Chem. Plasma Proc., 1994, 14(3), p 333-360

    Article  CAS  Google Scholar 

  7. N.Y. Mendoza-Gonzalez, B.M. Goortani, P. Proulx, Numerical Simulation of Silica Nanoparticles Production in an RF Plasma Reactor: Effect of Quench, Mater. Sci. Eng. C, 2007, 27(5-8), p 1265-1269

    Article  CAS  Google Scholar 

  8. A.B. Murphy, Formation of Titanium Nanoparticles from a Titanium Tetrachloride Plasma, J. Phys. D: Appl. Phys., 2004, 37, p 2841-2847

    Article  ADS  CAS  Google Scholar 

  9. M. Shigeta, T. Watanabe, Multi-Component Co-Condensation Model of Ti-Based Boride/Silicide Nanoparticle Growth in Induction Thermal Plasmas, Thin Solid Films, 2007, 515, p 4217-4250

    Article  ADS  CAS  Google Scholar 

  10. M. Shigeta, T. Watanabe, Growth Mechanism of Silicon-Based Functional Nanoparticles Fabricated by Inductively Coupled Thermal Plasmas, J. Phys. D: Appl. Phys., 2007, 40, p 2407-2419

    Article  ADS  CAS  Google Scholar 

  11. M. Shigeta, T. Watanabe, Numerical Investigation of Cooling Effect on Platinum Nanoparticle formation in Inductively Coupled Thermal Plasmas, J. Appl. Phys., 2008, 103, p 074903

    Article  ADS  Google Scholar 

  12. A. Vorobev, O. Zikanov, and P. Mohanty, Modelling of the In-Flight Synthesis of TaC Nanoparticles from Liquid Precursor in Thermal Plasma Jet, J. Phys. D: Appl. Phys., 2008, 41, 085302 (15p)

    Google Scholar 

  13. J.P. Trelles, E. Pfender, J. Heberlein, Multiscale Finite Element Modeling of Arc Dynamics in a DC Plasma Torch, Plasma Chem. Plasma Proc., 2006, 26(6), p 557-575

    Article  CAS  Google Scholar 

  14. T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows, Comput. Fluids, 1995, 24(3), p 227-238

    Article  MATH  Google Scholar 

  15. W. L. T. Chen, J. Heberlein, E. Pfender, Critical Analysis of Viscosity Data of Thermal Argon Plasmas at Atmospheric Pressure, Plasma Chem. and Plasma Proc., 1996, 16(4), p 635-650

    Article  CAS  Google Scholar 

  16. B. Liu, T. Zhang, D.T. Gawne, Computational Analysis of the Influence of Process Parameters on the Flow Field of a Plasma Jet, Surf. Coat. Technol., 2000, 132, p 202-216

    Article  CAS  Google Scholar 

  17. A Critical Review of Refractories, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, 1964

  18. Yu.M. Tairov and V.F. Tsvetkov, Semiconductor Compounds AIV BIV, Handbook on Electrotechnical Materials, Vol. 3, Yu.V. Koritskii, V.V. Pasynkov, and B.M. Tareev, Ed., Energomashizdat, Leningrad, 1988, p 446-471 (in Russian)

  19. S.K. Friedlander, Smoke, Dust, and Haze. Fundamentals of Aerosol Dynamics, Oxford University Press, 2000

  20. S.L. Girshick, C.-P. Chiu, P.H. McMurry, Time-Dependent Aerosols Models and Homogeneous Nucleation Rates, Aerosol Sci. Technol., 1990, 13, p 465-477

    Article  CAS  Google Scholar 

  21. J. Zazula, On Graphite Transformations at High Temperature and Pressure Induced by Absorption of the LHC Beam, CERN-LHC-Project-Note-78, 1997

  22. H.R. Leider, O.H. Krikorian, D.A. Young, Thermodynamic Properties of Carbon up to the Critical Point, Carbon, 1973, 11(5), p 555-563

    Article  CAS  Google Scholar 

  23. D. Stull, American Institute of Physics Handbook, 3rd ed., D.E. Gray, Ed., McGraw-Hill, New York, 1972

  24. J. A. Dean (editor), Lange’s Handbook of Chemistry (15th edn), New York: McGraw-Hill, 1999

    Google Scholar 

  25. R.H. Schumm, D.D. Wagman, S. Bailey, W.H. Evans, and V.B. Parker, National Bureau of Standards (USA), Technical Notes 270-1 to 270-8, 1973

  26. A.P. Miiller, A. Cezairliyan, Measurement of Surface Tension of Tantalum by a Dynamic Technique in a Microgravity Environment, Int. J. Thermophys., 1993, 14(5), pp 1063-1075

    Article  CAS  Google Scholar 

  27. S. Nuriel, L. Liu, A.H. Barber, H.D. Wagner, Direct Measurement of Multiwall Nanotube Surface Tension, Chem. Phys. Let., 2005, 404, p 263-266

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the reviewers for insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vorobev.

Additional information

This article is an invited paper selected from presentations at the 2008 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray Crossing Borders, Proceedings of the 2008 International Thermal Spray Conference, Maastricht, The Netherlands, June 2-4, 2008, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2008.

Appendix

Appendix

Physical Properties

The referenced points for Ta, C, and Si gases used for the simulations are summarized in Table 1. Between the data points, the vapor pressure was approximated by the Clausius-Clapeyron equation:

$$ p = p_{{{\text{ref}}}} \,\exp {\left( { - \frac{Q} {R}{\left( {\frac{1} {T} - \frac{1} {{T_{{{\text{ref}}}} }}} \right)}} \right)}. $$
Table 1 Vapor pressure reference points

Here p ref and T ref are the values given in Table 1, Q is the latent heat of vaporization per mole, and R is the universal gas constant. For the latent heat of vaporization the following values were used: for Ta, Q = 3.65 × 10J mol−1 (Ref 24), for C, Q = 3.56 × 10J mol−1 (Ref 25), and for Si, Q = 3.59 × 10J mol−1 (Ref 24).

For the homogeneous nucleation of Ta gas, the value of the surface tension coefficient σ = 2.07 N m−1, reported in Ref 26, was used. In the calculations in the current study, the temperature variations exceed the reported measurement interval. The authors chose to extrapolate the constant value for the surface tension coefficient on the entire temperature range where the particles exist. Following the common assumption of the classical nucleation theories the dependence of the surface tension on the particle size is not considered. To describe the process of nucleation of Si-C, the surface tension of C is needed. No measurements of the surface tension for carbon were found in the literature, which is likely because of the fact that carbon is not observed in a liquid form under atmospheric pressure (Ref 21). To estimate the value of the surface tension, the results of measurements of the free surface energy of solid carbon fibers (Ref 27), σ = 0.046 J m−2, were used.

The density of TaC in solid form is 1.39 × 10kg m−3, and the density of SiC is 3.22 × 10kg m−3. To calculate the size of particles, the following diameters of Ta and C atoms were assumed, 2.7 × 10−10 m and 2.6 × 10−10 m; the diameter of Si atoms was taken as 2.2 × 10−10 m.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobev, A., Zikanov, O. & Mohanty, P. A Co-Condensation Model for In-Flight Synthesis of Metal-Carbide Nanoparticles in Thermal Plasma Jet. J Therm Spray Tech 17, 956–965 (2008). https://doi.org/10.1007/s11666-008-9240-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-008-9240-y

Keywords

Navigation