Skip to main content
Log in

Microstructure and Wear Performance of Fly Ash-Reinforced Copper Matrix Composites Prepared via Powder Metallurgy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research work investigated the role of fly ash particles (0, 5, 10, 15 and 20 wt.%) on the microstructural evolution and the wear resistance under dry sliding conditions of copper matrix composites (CMCs), prepared through powder metallurgy (PM) route. Copper and fly ash particles were initially mixed in a twin-shell blender, compacted in a die and sintered in a protected muffle furnace. Proper dispersion of fly ash particles was obtained. XRD plots did not show the formation of any other compounds or oxides. The increase in fly ash content increased porosity content. EBSD images of the composites revealed grain refinement due to the incorporation of fly ash particles. Fly ash reinforcement particles enhanced the resistance to wear and lowered the values of the coefficient of friction (COF). The wear mechanism shifted to abrasive wear from microcutting at particle content exceeding 10 wt.%. The electrical conductivity of the prepared CMCs was negatively affected by fly ash particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons. The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Y. Mazaheri, M. Bahiraei, M.M. Jalilvand, S. Ghasemi, and A. Heidarpour, Improving Mechanical and Tribological Performances of Pure Copper Matrix Surface Composites Reinforced by Ti2AlC MAX Phase and MoS2 Nanoparticles, Mater. Chem. Phys., 2021, 270, p 124790.

    Article  CAS  Google Scholar 

  2. E.Z. Xu, J.X. Huang, Y.C. Li, Z.F. Zhu, M. Cheng, D.T. Li, H.H. Zhong, J.W. Liu, and Y. Jiang, Graphite Cluster/Copper-Based Powder Metallurgy Composite for Pantograph Slider with Well-Behaved Mechanical and Wear Performance, Powder Technol., 2019, 344, p 551–560.

    Article  CAS  Google Scholar 

  3. T.J. Li, Y.Q. Wang, M. Yang, H.L. Hou, and S.J. Wu, High Strength and Conductivity Copper Matrix Composites Reinforced by In-Situ Graphene Through Severe Plastic Deformation Processes, J. Alloys Compd., 2021, 851, p 156703.

    Article  CAS  Google Scholar 

  4. Y. Bian and J.J. Ni, Microstructure Evolution and Properties of In Situ Micro/Nanoscale Mo2C Reinforced Copper Composite Synthesized by Hot-Pressing Consolidation of Mechanical Alloying Powders, J. Mater. Eng. Perform., 2022, 31, p 4604–4610.

    Article  CAS  Google Scholar 

  5. A. Jamwal, P.P. Seth, D. Kumar, R. Agrawal, K.K. Sadasivuni, and P. Gupta, Microstructural, Tribological and Compression Behaviour of Copper Matrix Reinforced with Graphite-SiC Hybrid Composites, Mater. Chem. Phys., 2020, 251, p 123090.

    Article  CAS  Google Scholar 

  6. L.H. Fu, M. Zhou, Y. Gao, Y.Z. Zhang, S.M. Du, Y. Zhang, Y. Yue, and Y.S. Mao, Effect of Interface Oxidation Treatment on the Interfacial Reactions and Wear Properties of Co-continuous SiC3D/Cu Composites, Ceram. Int., 2022, 48, p 7784–7795.

    Article  CAS  Google Scholar 

  7. G. Nageswaran, S. Natarajan, and K.R. Ramkumar, Synthesis, Structural Characterization, Mechanical and Wear Behavior of Cu-TiO2-Gr Hybrid Composite Through Stir Casting Technique, J. Alloys Compd., 2018, 768, p 733–741.

    Article  CAS  Google Scholar 

  8. J. Jabinth and N. Selvakumar, Experimental Investigation of Mechanical and Wear Behaviour of Cu-V2O5-Gr(L) Reinforced Composites, Mater. Lett., 2022, 306, p 130925.

    Article  CAS  Google Scholar 

  9. M. Ebrahimi and M.A. Par, Twenty-Year Uninterrupted Endeavor of Friction Stir Processing by Focusing on Copper and Its Alloys, J. Alloys Compd., 2019, 781, p 1074–1090.

    Article  CAS  Google Scholar 

  10. H. Kumar, R. Prasad, and P. Kumar, Effect of Multi-groove Reinforcement Strategy on Cu/SiC Surface Composite Fabricated by Friction Stir Processing, Mater. Chem. Phys., 2020, 256, p 123720.

    Article  CAS  Google Scholar 

  11. T. Thankachan, K. SooryaPrakash, and V. Kavimani, Investigations on the Effect of Friction Stir Processing on Cu-BN Surface Composites, Mater. Manuf. Process., 2018, 33, p 299–307.

    Article  CAS  Google Scholar 

  12. A. Heidarzadeh, H. Pouraliakbar, S. Mahdavi, and M.R. Jandaghi, Ceramic Nanoparticles Addition in Pure Copper Plate: FSP Approach, Microstructure Evolution and Texture Study Using EBSD, Ceram. Int., 2018, 44, p 3128–3133.

    Article  CAS  Google Scholar 

  13. N. Vijay Ponraj, A. Azhagurajan, S.C. Vettivel, X. SahayaShajan, P.Y. Nabhiraj, and M. Sivapragash, Graphene Nanosheet as Reinforcement Agent in Copper Matrix Composite by Using Powder Metallurgy Method, Surf. Interfaces, 2017, 6, p 190–196.

    Article  Google Scholar 

  14. E. Sap, Microstructural and Mechanical Properties of Cu-Based Co-Mo-Reinforced Composites Produced by the Powder Metallurgy Method, J. Mater. Eng. Perform., 2020, 29, p 8461–8472.

    Article  CAS  Google Scholar 

  15. J.P. Huang, M. Tayyebi,, and A.H. Assari, Effect of SiC Particle Size and Severe Deformation on Mechanical Properties and Thermal Conductivity of Cu/Al/Ni/SiC Composite Fabricated by ARB Process, J. Manuf. Process., 2021, 68, p 57–68.

    Article  Google Scholar 

  16. X.Y. Zhou, Z. Hu, and D.Q. Yi, Enhancing the Oxidation Resistance and Electrical Conductivity of Alumina Reinforced Copper-Based Composites via Introducing Ag and Annealing Treatment, J. Alloys Compd., 2019, 787, p 786–793.

    Article  CAS  Google Scholar 

  17. A.M. Lopez, C.A.L. Patino, E.A.A. Reyes, E.B. Becerril, and G.R. Ortiz, Effect of Graphite Addition on Wear Behaviour of Hybrid Cu/TiC-Gr Infiltrated Composites, Wear, 2021, 484–485, p 203793.

    Article  Google Scholar 

  18. P.K. Prajapati and D. Chaira, Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity, Trans. Indian Inst. Met., 2019, 72, p 673–684.

    Article  CAS  Google Scholar 

  19. S.H. Pan, T.Q. Zheng, G.C. Yao, Y.T. Chi, I.D. Rosa, and X.C. Li, High-Strength and High-Conductivity In Situ Cu–TiB2 Nanocomposites, Mater. Sci. Eng. A, 2022, 831, p 141952.

    Article  CAS  Google Scholar 

  20. I. Dinaharan and E.T. Akinlabi, Low Cost Metal Matrix Composites Based on Aluminum, Magnesium and Copper Reinforced with Fly Ash Prepared Using Friction Stir Processing, Compos. Commun., 2018, 9, p 22–26.

    Article  Google Scholar 

  21. A. Bahrami, N. Soltani, M.I. Pech-Canul, and C.A. Gutiérrez, Development of Metal-Matrix Composites from Industrial/Agricultural Waste Materials and Their Derivatives, Crit. Rev. Environ. Sci. Technol., 2016, 46, p 143–208.

    Article  Google Scholar 

  22. A.K. Kasar, N. Gupta, P.K. Rohatgi, and P.L. Menezes, A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties, JOM, 2020, 72, p 2340–2351.

    Article  CAS  Google Scholar 

  23. C. Lanzerstorfer, Fly Ash from Coal Combustion: Dependence of the Concentration of Various elements on the Particle Size, Fuel, 2018, 228, p 263–271.

    Article  CAS  Google Scholar 

  24. M. Ahmaruzzaman, A Review on the Utilization of Fly Ash, Prog. Energy Combust. Sci., 2010, 36, p 327–363.

    Article  CAS  Google Scholar 

  25. N.V. Sai, M. Komaraiah, and A.V.S.R. Raju, Preparation and Properties of Sintered Copper–Tin Composites Containing Copper Coated or Uncoated Fly Ash, Mater. Manuf. Process., 2008, 23, p 651–657.

    Article  CAS  Google Scholar 

  26. P.Y. Chew, S. Zahi, A.H. You, P.S. Lim, and M.C. Ng, Preparation of Cu and Fly Ash Composite by Powder Metallurgy Technique, AIP Conf. Proc., 2011, 1328, p 208–210.

    Article  Google Scholar 

  27. P. Balamurugan and M. Uthayakumar, Influence of Process Parameters on Cu–Fly Ash Composite by Powder Metallurgy Technique, Mater. Manuf. Process., 2015, 30, p 313–319.

    Article  CAS  Google Scholar 

  28. S.T. Kasirajan, A.N. Balaji, P. Narayanasamy, and S.C. Vettivel, Microstructural, Electrical, Thermal and Tribological Studies of Copper-Fly Ash Composites Through Powder Metallurgy, Bull. Acad. Pol. Sci., 2018, 66, p 935–940.

    Google Scholar 

  29. P. Balamurugan, M. Uthayakumar, and M.N. Wójcik, Wear Studies of Copper-Fly Ash Composite Under Dry Sliding Conditions, Mater. Res. Express, 2019, 6, p 1065d5.

    Article  CAS  Google Scholar 

  30. A. Devaraju, P. Sivasamy, R. Gopi, and A. Muthiah, Studies on Wear Behaviour of Silicon Carbide and Fly Ash Reinforcedcopper Based Metal Matrix Composites, Mater. Today Proc., 2021, 39, p 888–891.

    Article  CAS  Google Scholar 

  31. R. Rajesh, B. Shankar, J. Harikrishnan, A. Ritwik, A. Hari Krishna, Q. Usman, and R. HariSankar, Study on Conventional and Microwave Assisted Sintering of Cu–FA COMPOSITES, Mater. Today Proc., 2021, 39, p 1677–1681.

    Article  CAS  Google Scholar 

  32. I. Dinaharan and T. Albert, Effect of Reinforcement Type on Microstructural Evolution and Wear Performance of Copper Matrix Composites via Powder Metallurgy, Mater. Today Commun., 2023, 34, p 105250.

    Article  CAS  Google Scholar 

  33. C. Suryanarayana and N. Al-Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater Sci., 2013, 58, p 383–502.

    Article  CAS  Google Scholar 

  34. S.C. Vettivel, N. Selvakumar, and N. Leema, Experimental and Prediction of Sintered Cu-W Composite by Using Artificial Neural Networks, Mater. Des., 2013, 45, p 323–335.

    Article  CAS  Google Scholar 

  35. G.C. Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, and C. Bindal, The Effect of Sintering Temperature on Some Properties of Cu-SiC Composite, J. Alloys Compd., 2011, 509, p 6036–6042.

    Article  Google Scholar 

  36. A. Jamwal, P. Mittal, R. Agrawal, S. Gupta, D. Kumar, K.K. Sadasivuni, and P. Gupta, Towards Sustainable Copper Matrix Composites: Manufacturing Routes with Structural, Mechanical, Electrical and Corrosion Behaviour, J. Compos. Mater., 2020, 54, p 2635–2649.

    Article  CAS  Google Scholar 

  37. G.C. Efe, M. Ipek, S. Zeytin, and C. Bindal, An Investigation of the Effect of SiC Particle Size on Cu-SiC Composites, Compos. Part B, 2012, 43, p 1813–1822.

    Article  Google Scholar 

  38. R. Mitra and Y.R. Mahajan, Interfaces in Discontinuously Reinforced Metal Matrix Composites: An Overview, Bull. Mater. Sci., 1995, 18, p 405–434.

    Article  CAS  Google Scholar 

  39. H.S. Kim, On the Rule of Mixtures for the Hardness of Particle Reinforced Composites, Mater. Sci. Eng. A, 2000, 289, p 30–33.

    Article  Google Scholar 

  40. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981–988.

    Article  Google Scholar 

  41. I. Solodkyi, O. Bezdorozhev, and P. Loboda, High Electrical Conductive Copper Matrix Composites Reinforced with LaB6-TiB2 Eutectic Particles, Vacuum, 2020, 177, p 109407.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Tuticorin Thermal Power Station at Tuticorin, V V College of Engineering at Tisaiyanvilai, Speed Spark EDM at Coimbatore, VV Titanium Pigments at Thoothukudi, Tii Techno Testing Services Pvt. Ltd at Chennai, The South India Textile Research Association (SITRA) at Coimbatore, OIM and Texture Lab at Indian Institute of Technology Bombay, Centre for Research in Metallurgy at Karunya University and Centre for NEMS and Nanophotonics at Indian Institute of Technology Madras for providing the facilities and materials to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Dinaharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinaharan, I., Albert, T. & David Raja Selvam, J. Microstructure and Wear Performance of Fly Ash-Reinforced Copper Matrix Composites Prepared via Powder Metallurgy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08951-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08951-w

Keywords

Navigation