Skip to main content
Log in

Prediction of Cutting Forces in Hard Turning Process Using Machine Learning Methods: A Case Study

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Accurately predicting cutting forces in hard turning processes can lead to improved process control, reduced tool wear, and enhanced productivity. This study aims to predict machining force components during the hard turning of AISI 52100 bearing steel using machine learning models. Specifically, eight models were considered, and their prediction performance was assessed using experimental data collected during AISI 52100 bearing steel turning with a CBN cutting tool. The fivefold cross-validation technique has been adopted in training to obtain more reliable estimates of the performance of a model and reduce the risk of overfitting the data. Results showed that the Gaussian process regression (GPR) and decision tree regression outperformed the other models, with averaged root-mean-square error values of 14.44 and 12.72, respectively. GPR also provided prediction uncertainty. Additionally, feature selection was performed using two algorithms, namely Regressional Relief-F and F test, to identify the most important features impacting the cutting forces. The findings of this study can be useful in optimizing cutting parameters for hard turning processes to select cutting forces, reduce tool wear, and minimize the generated heat during the machining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S.K.S.R. Schmid, Manufacturing Engineering and Technology. J. Mater. Process. Technol. (2013).

  2. S. Makhfi, K. Haddouche, A. Bourdim, and M. Habak, Modeling of Machining Force in Hard Turning Process, Mech. Kauno Technol. Univ., 2018, 24(3), p 367–375.

    Google Scholar 

  3. M.W. Azizi, O. Keblouti, L. Boulanouar, and M.A. Yallese, Design Optimization in Hard Turning of E19 Alloy Steel by Analysing Surface Roughness, Tool Vibration and Productivity, Struct. Eng. Mech., 2020, 73(5), p 501–513.

    Google Scholar 

  4. S. Roy, R. Kumar, A.K. Sahoo, A. Pandey, and A. Panda, Investigation on Hard Turning Temperature under a Novel Pulsating MQL Environment: An Experimental and Modelling Approach, Mech. Ind., 2020, 21(6), p 605.

    Article  CAS  Google Scholar 

  5. A. Chavan and V. Sargade, Surface Integrity of AISI 52100 Steel during Hard Turning in Different Near-Dry Environments, Adv. Mater. Sci. Eng., 2020, 2020, p 1.

    Article  Google Scholar 

  6. F.K. Branco, S. Delijaicov, É.C. Bordinassi, and R. Bortolussi, Surface Integrity Analisys in the Hard Turning of Cemented Steel AISI 4317, Mater. Res., 2018, 21(5).

  7. P. Kumar, S.R. Chauhan, C.I. Pruncu, M.K. Gupta, D.Y. Pimenov, M. Mia, and H.S. Gill, Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation, Materials (Basel)., MDPI AG, 2019, 12(1).

  8. P. Umamaheswarrao, D. Rangaraju, K.N.S. Suman, and B. Ravisankar, Machining Force Comparison for Surface Defect Hard Turning and Conventional Hard Turning of AISI 52100 Steel, INCAS Bull., 2021, 13(3), p 205–214.

    Article  Google Scholar 

  9. C. Cappellini and A. Abeni, Development and Implementation of Crater and Flank Tool Wear Model for Hard Turning Simulations, Int. J. Adv. Manuf. Technol., 2022, 120(3–4), p 2055.

    Article  Google Scholar 

  10. M. Marconi and R. Menghi, A Sustainable Manufacturing Tool for the Analysis and Management of Resource Consumption within Production Processes, Int. J. Interact. Des. Manuf., 2021, 15(1), p 65.

    Article  Google Scholar 

  11. W. Cai and K. Hung Lai, Sustainability Assessment of Mechanical Manufacturing Systems in the Industrial Sector, Renew. Sustain. Energy Rev., 2021, 135, p 110169.

    Article  Google Scholar 

  12. M. Jamil, A.M. Khan, N. He, L. Li, A. Iqbal, and M. Mia, Evaluation of Machinability and Economic Performance in Cryogenic-Assisted Hard Turning of α-β Titanium: A Step towards Sustainable Manufacturing, Mach. Sci. Technol., 2019, 23(6), p 1022.

    Article  CAS  Google Scholar 

  13. R. Nur, N.M. Yusof, I. Sudin, F.M. Nor, and D. Kurniawan, Determination of Energy Consumption during Turning of Hardened Stainless Steel Using Resultant Cutting Force, Metals (Basel), 2021, 11(4), p 565.

    Article  CAS  Google Scholar 

  14. A. Sahinoglu and E. Ulas, An Investigation of Cutting Parameters Effect on Sound Level, Surface Roughness, and Power Consumption during Machining of Hardened AISI 4140, Mech. Ind., 2020, 21(5), p 523.

    Article  CAS  Google Scholar 

  15. Y. Yu, X. Wu, and Q. Qian, Better Utilization of Materials’ Compositions for Predicting Their Properties: Material Composition Visualization Network, Eng. Appl. Artif. Intell., 2023, 117, p 105539. https://doi.org/10.1016/j.engappai.2022.105539

    Article  Google Scholar 

  16. A. Dorbane, F. Harrou, and Y. Sun, Exploring Deep Learning Methods to Forecast Mechanical Behavior of FSW Aluminum Sheets, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07376-1

    Article  Google Scholar 

  17. A. Dorbane, F. Harrou, and Y. Sun, “A Tree-Driven Ensemble Learning Approach to Predict FS Welded Al-6061-T6 Material Behavior,” 2022 7th International Conference on Frontiers of Signal Processing (ICFSP), IEEE, 2022, p 184–188, doi:https://doi.org/10.1109/ICFSP55781.2022.9924883.

  18. K. Guo, Y. Zhenze, C.-H. Yu, and M. Buehler, Artificial Intelligence and Machine Learning in Design of Mechanical Materials, Mater. Horiz., 2021, 8, p 1153.

    Article  CAS  Google Scholar 

  19. M. Fernandes, J.M. Corchado and G. Marreiros, Machine Learning Techniques Applied to Mechanical Fault Diagnosis and Fault Prognosis in the Context of Real Industrial Manufacturing Use-Cases: A Systematic Literature Review, Appl. Intell., 2022, 52(12), p 14246–14280. https://doi.org/10.1007/s10489-022-03344-3

    Article  Google Scholar 

  20. K. Singh and I.A. Sultan, A Computer-Aided Sustainable Modelling and Optimization Analysis of Cnc Milling and Turning Processes, J. Manuf. Mater. Process., 2018, 2(4), p 65.

    CAS  Google Scholar 

  21. D. Cica, B. Sredanovic, and S. Tesic, Predictive Modeling of Turning Operations under Different Cooling / Lubricating Conditions for Sustainable Manufacturing with Machine Learning Techniques, (2020).

  22. A. Das, S.R. Das, J.P. Panda, A. Dey, K.K. Gajrani, N. Somani, and N. Gupta, Machine Learning Based Modelling and Optimization in Hard Turning of AISI D6 Steel with Newly Developed AlTiSiN Coated Carbide Tool, 2022, doi:https://doi.org/10.48550/arxiv.2202.00596.

  23. C. Du, C.L. Ho, and J. Kaminski, Prediction of Product Roughness, Profile, and Roundness Using Machine Learning Techniques for a Hard Turning Process, Adv. Manuf., 2021, 9(2), p 206–215. https://doi.org/10.1007/s40436-021-00345-2.

    Article  Google Scholar 

  24. S. Makhfi, M. Habak, R. Velasco, K. Haddouche, and P. Vantomme, Prediction of Cutting Forces Using ANNs Approach in Hard Turning of AISI 52100 Steel, AIP Conf. Proc., American Institute of Physics, 2011, 1353(1), p 669-674, doi:https://doi.org/10.1063/1.3589592.

  25. A. Panda, A.K. Sahoo, I. Panigrahi, and A.K. Rout, Investigating Machinability in Hard Turning of AISI 52100 Bearing Steel Through Performance Measurement: QR, ANN and GRA Study, Int. J. Automot. Mech. Eng., 2018, 15(1), p 4935–4961. https://doi.org/10.15282/ijame.15.1.2018.5.0384.

    Article  CAS  Google Scholar 

  26. A.K. Sahoo, A.K. Rout, and D.K. Das, Response Surface and Artificial Neural Network Prediction Model and Optimization for Surface Roughness in Machining, Int. J. Ind. Eng. Comput., 2015, 6(2), p 229–240.

    Google Scholar 

  27. R. Kumar, A.K. Sahoo, P.C. Mishra, R.K. Das, and M. Ukamanal, Experimental Investigation on Hard Turning Using Mixed Ceramic Insert under Accelerated Cooling Environment, Int. J. Ind. Eng. Comput., 2018, 9(4), p 509–522.

    Google Scholar 

  28. A. Panda, A.K. Sahoo, and A.K. Rout, Investigations on Surface Quality Characteristics with Multi-Response Parametric Optimization and Correlations, Alexandria Eng. J., 2016, 55(2), p 1625–1633.

    Article  Google Scholar 

  29. A.K. Sahoo, K. Orra, and B.C. Routra, Application of Response Surface Methodology on Investigating Flank Wear in Machining Hardened Steel Using PVD TiN Coated Mixed Ceramic Insert, Int. J. Ind. Eng. Comput., 2013, 4(4), p 469–478.

    Google Scholar 

  30. R.K. Das, A.K. Sahoo, P.C. Mishra, R. Kumar, and A. Panda, Comparative Machinability Performance of Heat Treated 4340 Steel under Dry and Minimum Quantity Lubrication Surroundings, Procedia Manuf., 2018, 20, p 377–385.

    Article  Google Scholar 

  31. A. Panda, A.K. Sahoo, R. Kumar, and R.K. Das, A Review on Machinability Aspects for AISI 52100 Bearing Steel, Mater. Today Proc., 2020, 23, p 617–621.

    Article  CAS  Google Scholar 

  32. I. Urresti, I. Llanos, J. Zurbitu, and O. Zelaieta, Tool Wear Modelling of Cryogenic-Assisted Hard Turning of AISI 52100. Procedia CIRP, (2021).

  33. P. Umamaheswarrao, D. Ranga Raju, K.N.S. Suman, and B. Ravi Sankar, Hybrid Optimal Scheme for Minimizing Machining Force and Surface Roughness in Hard Turning of AISI 52100 Steel, Int J Eng Sci Technol., 2019, 11(3), p 19–29.

    Article  Google Scholar 

  34. A. Anand, A.K. Behera, and S.R. Das, An Overview on Economic Machining of Hardened Steels by Hard Turning and Its Process Variables, Manuf. Rev., 2019, 6, p 4.

    CAS  Google Scholar 

  35. S. Makhfi, Modélisation et Simulation Du Comportement Themomécanique de l’usinage à Grande Vitesse. (2018).

  36. I.E. Frank and J.H. Friedman, A Statistical View of Some Chemometrics Regression Tools, Technometrics, [Taylor & Francis, Ltd., American Statistical Association, American Society for Quality], 1993, 35(2), p 109–135, doi:https://doi.org/10.2307/1269656.

  37. B. Bouyeddou, F. Harrou, A. Saidi, and Y. Sun, An Effective Wind Power Prediction Using Latent Regression Models, in 2021 International Conference on ICT for Smart Society (ICISS), 2021, p 1–6.

  38. P. Geladi and B.R. Kowalski, Partial Least-Squares Regression: A Tutorial, Anal. Chim. Acta, 1986, 185, p 1–17. https://doi.org/10.1016/0003-2670(86)80028-9.

    Article  CAS  Google Scholar 

  39. W. Loh, Classification and Regression Trees, Wiley Interdiscip. Rev. data Min. Knowl. Discov., 2011, 1(1), p 14–23.

    Article  Google Scholar 

  40. W. Hong, Y. Dong, L.-Y. Chen, and S.-Y. Wei, SVR with Hybrid Chaotic Genetic Algorithms for Tourism Demand Forecasting, Appl. Soft Comput., 2011, 11, p 1881–1890.

    Article  Google Scholar 

  41. A.J. Smola and B. Schölkopf, A Tutorial on Support Vector Regression, Stat. Comput., 2004, 14(3), p 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  Google Scholar 

  42. J. Lee, W. Wang, F. Harrou, and Y. Sun, Reliable Solar Irradiance Prediction Using Ensemble Learning-Based Models: A Comparative Study, Energy Convers. Manag., 2020, 208, p 112582.

    Article  Google Scholar 

  43. J. Lee, W. Wang, F. Harrou, and Y. Sun, Wind Power Prediction Using Ensemble Learning-Based Models N3—https://doi.org/10.1109/ACCESS.2020.2983234.IEEE Access, 2020, http://hdl.handle.net/10754/662323.

  44. F. Harrou, A. Saidi, Y. Sun, and S. Khadraoui, “Monitoring of Photovoltaic Systems Using Improved Kernel-Based Learning Schemes N3—https://doi.org/10.1109/JPHOTOV.2021.3057169,” IEEE Journal of Photovoltaics, 2021, http://hdl.handle.net/10754/667699.

  45. C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning, Gaussian Processes for Machine Learning, (Cambridge, MA, USA), The MIT Press, 2006, doi:https://doi.org/10.7551/mitpress/3206.001.0001.

  46. L. Tang, L. Yu, S. Wang, J. Li, and S. Wang, A Novel Hybrid Ensemble Learning Paradigm for Nuclear Energy Consumption Forecasting, Appl. Energy, 2012, 93, p 432.

    Article  Google Scholar 

  47. Q. Pan, F. Harrou, and Y. Sun, A Comparison of Machine Learning Methods for Ozone Pollution Prediction, J. Big Data, 2023, 10(1), p 1–31. https://doi.org/10.1186/S40537-023-00748-X

    Article  Google Scholar 

  48. M. Robnik-Šikonja and I. Kononenko, Theoretical and Empirical Analysis of ReliefF and RReliefF, Mach. Learn., 2003, 53(1), p 23–69. https://doi.org/10.1023/A:1025667309714

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim Dorbane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhfi, S., Dorbane, A., Harrou, F. et al. Prediction of Cutting Forces in Hard Turning Process Using Machine Learning Methods: A Case Study. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08555-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08555-4

Keywords

Navigation