Skip to main content

Advertisement

Log in

Data-Driven Model for Predicting Tensile Properties of Wire Arc Additive Manufactured 316L Steels and Its Validation

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper develops a regression based and neural network machine learning (ML) model for the prediction of mechanical properties of wire arc additively manufactured (WAAMed) steel. The presented data driven approach studies the correlation between input parameters and ensuing mechanical properties to increase the competency in terms of efficiency and result optimality. In this work, the interaction of various process parameters i.e. current, voltage, wire feed speed, travel speed and gas flow rate on arriving the mechanical properties (YS and UTS) in different orientations is investigated. The model utilizes 137 experimental datasets for machine learning models. The developed machine learning models were validated through inhouse experimentation. Quantitative results suggested that the both models predicted the mechanical properties with good accuracy, but the random forest model outperform the neural network model in term of percentage error values. The occurrence of inhomogeneity in the microstructure and mechanical properties of the as-built wall is investigated. The microstructure of 316L thin wall consists of ferrite and austenite as main constituent phases, and ferrite morphology and presence of σ-phase inclusion have an impact on hardness and mechanical properties. The average hardness, YS and UTS values are 185 Hv0.2, 303 ± 6 MPa and 490 ± 18 MPa respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Derekar, A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium, Mater. Sci. Technol. (United Kingdom), 2018, 34(8), p 895–916. https://doi.org/10.1080/02670836.2018.1455012

    Article  CAS  ADS  Google Scholar 

  2. S. Thapliyal, Challenges Associated with the Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloys, Mater. Res. Exp., 2019, 6(11), p 112006.

    Article  Google Scholar 

  3. D. Ding, F. He, L. Yuan, Z. Pan, L. Wang, and M. Ros, The First Step towards Intelligent Wire Arc Additive Manufacturing: An Automatic Bead Modelling System Using Machine Learning through Industrial Information Integration, J Ind Inf Integr, 2021, 23, p 100218. https://doi.org/10.1016/j.jii.2021.100218

    Article  Google Scholar 

  4. M. Dinovitzer, X. Chen, J. Laliberte, X. Huang, and H. Frei, Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure, Addit. Manuf., 2019, 26, p 138–146. https://doi.org/10.1016/j.addma.2018.12.013

    Article  CAS  Google Scholar 

  5. A. Kumar and K. Maji, Selection of Process Parameters for Near-Net Shape Deposition in Wire Arc Additive Manufacturing by Genetic Algorithm, J. Mater. Eng. Perform., 2020, 29(5), p 3334–3352. https://doi.org/10.1007/s11665-020-04847-1

    Article  CAS  Google Scholar 

  6. F. Youheng, W. Guilan, Z. Haiou, and L. Liye, Optimization of Surface Appearance for Wire and Arc Additive Manufacturing of Bainite Steel, Int. J. Adv. Manuf. Technol., 2017, 91(1-4), p 301–313.

    Article  Google Scholar 

  7. T. DebRoy, T. Mukherjee, H.L. Wei, J.W. Elmer, and J.O. Milewski, Metallurgy, Mechanistic Models and Machine Learning in Metal Printing, Nat. Rev. Mater., 2021, 6(1), p 48–68. https://doi.org/10.1038/s41578-020-00236-1

    Article  CAS  ADS  Google Scholar 

  8. L. Meng, B. McWilliams, W. Jarosinski, H.Y. Park, Y.G. Jung, J. Lee, and J. Zhang, Machine Learning in Additive Manufacturing: A Review, Jom, 2020, 72(6), p 2363–2377. https://doi.org/10.1007/s11837-020-04155-y

    Article  ADS  Google Scholar 

  9. R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan, and A. Choudhary, A Predictive Machine Learning Approach for Microstructure Optimization and Materials Design, Sci. Rep., 2015, 5, p 11551.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. S. Banga, H. Gehani, S. Bhilare, J. Patel, and B. Kara, Note: This Manuscript Involved Equal Work Contribution By The Authors: 1,2,3,4 For Joint First-Authorship 3d Topology Optimization Using Convolutional Neural Networks, n.d

  11. D.S. Ertay, S. Kamyab, M. Vlasea, Z. Azimifar, T. Ma, A.D. Rogalsky, and P. Fieguth, Toward Sub-Surface Pore Prediction Capabilities for Laser Powder Bed Fusion Using Data Science, J. Manuf. Sci. Eng., 2021 https://doi.org/10.1115/1.4050461

    Article  Google Scholar 

  12. F. Imani, A. Gaikwad, M. Montazeri, P. Rao, H. Yang, and E. Reutzel, Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging, J. Manuf. Sci. Eng., 2018 https://doi.org/10.1115/1.4040615

    Article  Google Scholar 

  13. Y. Zhong, Z. Zheng, J. Li, C. Wang, and X. Wang, Effect of Ar-N2-He Shielding Gas on the Microstructure Evolution Mechanical Properties and Corrosion Resistance of the Laser-Mig Hybrid Additive Manufactured 316l Stainless Steel, SSRN Electron. J., 2022, 312, p 117844. https://doi.org/10.2139/ssrn.4094533

    Article  Google Scholar 

  14. N. Xi, K. Tang, X. Fang, Y. Li, Y. Duan, and K. Huang, Enhanced Comprehensive Properties of Directed Energy Deposited Inconel 718 by a Novel Integrated Deposition Strategy, J. Mater. Sci. Technol., 2022, 141, p 42–55. https://doi.org/10.1016/j.jmst.2022.09.026

    Article  CAS  Google Scholar 

  15. Y. Du, T. Mukherjee, and T. DebRoy, Physics-Informed Machine Learning and Mechanistic Modeling of Additive Manufacturing to Reduce Defects, Appl. Mater. Today, 2021, 24, p 101123.

    Article  Google Scholar 

  16. S. Thapliyal and A. Mishra, Machine Learning Classification-Based Approach for Mechanical Properties of Friction Stir Welding of Copper, Manuf. Lett., 2021, 29, p 52–55. https://doi.org/10.1016/j.mfglet.2021.05.010

    Article  Google Scholar 

  17. A. Agrawal, P.D. Deshpande, A. Cecen, G.P. Basavarsu, A.N. Choudhary, and S.R. Kalidindi, Exploration of Data Science Techniques to Predict Fatigue Strength of Steel from Composition and Processing Parameters, Integr. Mater. Manuf. Innov., 2014, 3(1), p 90–108.

    Article  Google Scholar 

  18. M. Zhang, C.N. Sun, X. Zhang, P.C. Goh, J. Wei, D. Hardacre, and H. Li, High Cycle Fatigue Life Prediction of Laser Additive Manufactured Stainless Steel: A Machine Learning Approach, Int. J. Fatigue, 2019, 128, p 105194. https://doi.org/10.1016/j.ijfatigue.2019.105194

    Article  CAS  Google Scholar 

  19. P. Brezina, Heat Treatment of Complex Aluminium Bronzes, Int. Met. Rev., 1982, 27(1), p 77–120. https://doi.org/10.1179/imr.1982.27.1.77

    Article  Google Scholar 

  20. S. Liu, A.P. Stebner, B.B. Kappes, and X. Zhang, Machine Learning for Knowledge Transfer across Multiple Metals Additive Manufacturing Printers, Addit. Manuf., 2021, 39, p 101877. https://doi.org/10.1016/j.addma.2021.101877

    Article  CAS  Google Scholar 

  21. H. Ko, P. Witherell, Y. Lu, S. Kim, and D.W. Rosen, Machine Learning and Knowledge Graph Based Design Rule Construction for Additive Manufacturing, Addit. Manuf., 2021, 37, p 101620. https://doi.org/10.1016/j.addma.2020.101620

    Article  Google Scholar 

  22. Q. Wu, T. Mukherjee, A. De, and T. DebRoy, Residual Stresses in Wire-Arc Additive Manufacturing-Hierarchy of Influential Variables, Addit. Manuf., 2020, 35, p 101355.

    Google Scholar 

  23. C. Xia, Z. Pan, J. Polden, H. Li, Y. Xu, and S. Chen, Modelling and Prediction of Surface Roughness in Wire Arc Additive Manufacturing Using Machine Learning, J. Intell. Manuf., 2022, 33(5), p 1467–1482. https://doi.org/10.1007/s10845-020-01725-4

    Article  Google Scholar 

  24. J. Vora, H. Parmar, R. Chaudhari, S. Khanna, M. Doshi, and V. Patel, Experimental Investigations on Mechanical Properties of Multi-Layered Structure Fabricated by GMAW-Based WAAM of SS316L, J. Mater. Res. Technol., 2022, 20, p 2748–2757. https://doi.org/10.1016/j.jmrt.2022.08.074

    Article  CAS  Google Scholar 

  25. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, and G. Miranda, 316L Stainless Steel Mechanical and Tribological Behavior—A Comparison between Selective Laser Melting, Hot Pressing and Conventional Casting, Addit. Manuf., 2017, 16, p 81–89.

    CAS  Google Scholar 

  26. K.L. Raju, S. Thapliyal, S. Sigatapu, A.K. Shukla, G. Bajargan, and B. Pant, Process Parameter Dependent Machine Learning Model for Densification Prediction of Selective Laser Melted Al-50Si Alloy and Its Validation, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-06831-3

    Article  Google Scholar 

  27. H. Inoue, T. Koseki, S. Ohkita, and M. Fuji, Formation Mechanism of Vermicular and Lacy Ferrite in Austenitic Stainless Steel Weld Metals, Sci. Technol. Weld. Join., 2000, 5(6), p 385–396.

    Article  CAS  Google Scholar 

  28. L. PalmeiraBelotti, J.A.W. van Dommelen, M.G.D. Geers, C. Goulas, W. Ya, and J.P.M. Hoefnagels, Microstructural Characterisation of Thick-Walled Wire Arc Additively Manufactured Stainless Steel, J. Mater. Process. Technol., 2022, 299, p 117373.

    Article  CAS  Google Scholar 

  29. K.U. Rani, R. Kumar, M.M. Mahapatra, R.S. Mulik, A. Świerczyńska, D. Fydrych, and C. Pandey, Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses, Materials (Basel), 2022, 15(20), p 7094.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. X. Chen, J. Li, X. Cheng, B. He, H. Wang, and Z. Huang, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng. A, 2017, 703, p 567–577. https://doi.org/10.1016/j.msea.2017.05.024

    Article  CAS  Google Scholar 

  31. C. Wang, T.G. Liu, P. Zhu, Y.H. Lu, and T. Shoji, Study on Microstructure and Tensile Properties of 316L Stainless Steel Fabricated by CMT Wire and Arc Additive Manufacturing, Mater. Sci. Eng. A, 2020, 796, p 140006.

    Article  CAS  Google Scholar 

  32. C.R. Cunningham, V. Dhokia, A. Shokrani, and S.T. Newman, Effects of In-Process LN2 Cooling on the Microstructure and Mechanical Properties of Type 316L Stainless Steel Produced by Wire Arc Directed Energy Deposition, Mater. Lett, 2021, 282, p 128707. https://doi.org/10.1016/j.matlet.2020.128707

    Article  CAS  Google Scholar 

  33. A.F. Padilha, D.M. Escriba, E. Materna-Morris, M. Rieth, and M. Klimenkov, Precipitation in AISI 316L(N) during Creep Tests at 550 and 600 °C up to 10 Years, J. Nucl. Mater., 2007, 362(1), p 132–138.

    Article  CAS  ADS  Google Scholar 

  34. G. RestrepoGarcés, J. Le Coze, J.L. Garin, and R.L. Mannheim, σ-Phase Precipitation in Two Heat-Resistant Steels-Influence of Carbides and Microstructure, Scr. Mater., 2004, 50(5), p 651–654.

    Article  Google Scholar 

  35. K. Yang, Q. Wang, Y. Qu, Y. Jiang, and Y. Bao, Microstructure and Corrosion Resistance of Arc Additive Manufactured 316L Stainless Steel, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2020, 35(5), p 930–936.

    Article  CAS  Google Scholar 

  36. X. Chen, J. Li, X. Cheng, H. Wang, and Z. Huang, Effect of Heat Treatment on Microstructure, Mechanical and Corrosion Properties of Austenitic Stainless Steel 316L Using Arc Additive Manufacturing, Mater. Sci. Eng. A, 2018, 715, p 307–314. https://doi.org/10.1016/j.msea.2017.10.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivraman Thapliyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedipaka, R., Thapliyal, S. Data-Driven Model for Predicting Tensile Properties of Wire Arc Additive Manufactured 316L Steels and Its Validation. J. of Materi Eng and Perform 33, 1083–1091 (2024). https://doi.org/10.1007/s11665-023-08071-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08071-5

Keywords

Navigation