Skip to main content
Log in

Influence of Reinforcement Particles on Dynamically Recrystallized Grain of Hot Upset Sintered Al-B4C Composites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The grain size of materials is significantly reduced by dynamic recrystallization (DRX), which improves the properties and performance of the materials, and it helps to extend the applications further. DRX behavior of the composite materials is greatly affected by the addition of reinforcement to the matrix due to the heterogeneous temperature of the composite. Therefore, the present investigation aims to study the DRX behavior of hot upset sintered Al-B4C composite with various percentages of B4C content (2, 4 and 6 wt.% of B4C) with 90% of initial relative density. Hot upset tests were performed for various temperatures (300-500 °C) and strain rates (0.1-0.3 s−1). The DRX grain size was significantly altered not only with deformation conditions but also with the addition of reinforcement in the matrix. The fracture surface of the sintered composite was analyzed for various compositions. Ductile fracture is observed in the 2 and 4 wt.%B4C content, and ductile and brittle fractures were observed in the 6 wt.%B4C composites. DRX models were established between grain size and deformation conditions for various compositions to predict the grain size, and the developed models were validated. The measured and calculated DRX grain size absolute error and mean absolute error were not exceeding 8.9 and 7.7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.J. Wang, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, and M.Y. Zheng, Dynamic Recrystallization Behavior of Particle Reinforced Mg Matrix Composites Fabricated by Stir Casting, J. Mater. Sci. Eng. A, 2012, 545, p 38–43.

    Google Scholar 

  2. G.E. Kodzhaspirov and M.I. Terentyev, Modeling the Dynamically Recrystallized Grain Size Evolution of a Superalloy, Mater. Phys. Mech., 2012, 13, p 70–76.

    Google Scholar 

  3. M. Shaban and B. Eghbali, Characterization of Austenite Dynamic Recrystallization Under Different Z Parameters in a Microalloyed Steel, J. Mater. Sci. Technol., 2011, 7(4), p 359–363.

    Google Scholar 

  4. Y.C. Lin, S.C. Luo, L.X. Yin, and J. Huang, Microstructural Evolution and High temperature Flow Behaviors of a Homogenized Sr-Modified Al-Si-Mg Alloy, J. Alloys. Compd., 2018, 739, p 590–599.

    Google Scholar 

  5. Y.C. Lin, W.Y. Dong, M. Zhou, D.X. Wen, and D.D. Chen, A Unified Constitutive Model Based on Dislocation Density for an Al-Zn-Mg-Cu Alloy at Time-Variant Hot Deformation Conditions, J. Mater. Sci. Eng. A, 2018, 718, p 165–172.

    Google Scholar 

  6. R. Seetharam, S.K. Subbu, and M.J. Davidson, Analysis of Grain Size Evolution of Sintered Al-4wt.%B4C Preforms Subjected to Hot Compression, Met. Microstruct. Anal., 2018, 7, p 176–183.

    Google Scholar 

  7. Y.L. Liu, N. Hansen, and D.J. Jensen, Effect of Dispersion Parameters and Cold Deformation on Recrystallisation of AI-SiC Composites, Mater. Sci. Technol., 1991, 7, p 270–275.

    Google Scholar 

  8. Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel During Compression at Elevated Temperatures, Mater. Lett., 2008, 62, p 2132–2135.

    Google Scholar 

  9. K.R. Ramkumar, S. Ilangovan, S. Sivasankaran, and Abdulaziz S. Alaboodi, Experimental Investigation on Synthesis and Structural Characterization of Cu-Zn- x wt.%Al2O3 (x=0, 3, 6, 9 & 12%) Nanocomposites Powders Through Mechanical Alloying, J. Alloys Compd., 2016, 68, p 518–526.

    Google Scholar 

  10. K.R. Ramkumar, S. Sivasankaran, and A.S. Alaboodi, Effect of Alumina Content on Microstructures, Mechanical, Wear and Machining Behavior of Cu-10Zn Nanocomposite Prepared by Mechanical Alloying and Hot-Pressing, J. Alloys. Compounds, 2017, 709, p 129–141.

    Google Scholar 

  11. K.R. Ramkumar, S. Sivasankaran, and A.S. Alaboodi, Strengthening Mechanisms on (Cu–10Zn)100–x–x wt% Al2O3 (x = 0, 3, 6, 9 and 12) Nanocomposites Prepared by Mechanical Alloying and Vacuum Hot Pressing: Influence of Reinforcement, Trans. Indian Inst. Met., 2017, 70, p 791–800.

    Google Scholar 

  12. M. Ferry and P.R. Munroe, Recrystallization Kinetics and Final Grain Size in a Cold Rolled Particulate Reinforced Al-Based MMC, Compos. Part. A, 2004, 35, p 1017–1025.

    Google Scholar 

  13. K.K. Deng, K. Wu, X.J. Wang, Y.W. Wu, X.S. Hu, M.Y. Zheng, W.M. Gan, and H.G. Brokmeier, Mater. Microstructure Evolution and Mechanical Properties of a Particulate Reinforced Magnesium Matrix Composites Forged at Elevated Temperatures, Sci. Eng. A, 2010, 527, p 1630–1635.

    Google Scholar 

  14. A. El-Sabbagha, M. Solimanb, M. Tahaa, and H. Palkowski, Hot Rolling Behaviour of Stir-Cast Al6061 and Al6082 Alloy–SiC Fine Particulates Reinforced Composites, J. Mater. Process. Technol., 2012, 212, p 497–508.

    Google Scholar 

  15. A. Patel, S. Das, and B.K. Prasad, Hot Deformation Behaviour of AA2014–10 wt.% SiC Composite, Trans. Indian. Inst. Met., 2014, 67(4), p 521–530.

    Google Scholar 

  16. X. Xia, P. Sakaris, and H. Mcqueen, Hot Deformation, Dynamic Recovery, and Recrystallisation Behaviour of Aluminium 6061-SiCp Composite, Mater. Sci. Technol., 1994, 10(6), p 487–496.

    Google Scholar 

  17. M. Ferry and P.R. Munroe, Microstructure and Kinetics of Recrystallisation of Hot Deformed Al-Al2O3 Particulate Reinforced Metal Matrix Composite, Mater. Sci. Technol., 1995, 11(8), p 734–740.

    Google Scholar 

  18. X. Xia and H.J. McQueen, Deformation Behaviour and Bicrostructure of a 20% Al2O3 Reinforced 6061 Al Composite, Appl. Composite. Mater., 1997, 4(6), p 333–347.

    Google Scholar 

  19. R.M. Mohanty and K. Balasubramanian, Boron Rich Boron Carbide: An Emerging High-Performance Material, Key. Eng. Mater., 2009, 395, p 125–142.

    Google Scholar 

  20. J. Abenojar, F. Velasco, and M.A. Martinez, Optimization of Processing Parameters for the Al+10% B4C System Obtained by Mechanical Alloying, J. Mater. Process. Technol., 2007, 184, p 441–446.

    Google Scholar 

  21. T. Thevenot, Boron Carbide—A Comprehensive Review, J. Eur. Ceram. Soc., 1990, 6(4), p 205–225.

    Google Scholar 

  22. D. Patidar and R.S. Rana, Effect of B4C Particle Reinforcement on the Various Properties of Aluminium Matrix Composites: A Survey Paper Mater, Today. Proc., 2017, 4(2), p 2981–2988.

    Google Scholar 

  23. M.O. Bodunrin, K.K. Alaneme, and L.H. Chown, Aluminium Matrix Hybrid Composites: A Review of Reinforcement Philosophies; Mechanical, Corrosion and Tribological Characteristics, J. Mater. Resear. Technol., 2015, 4(4), p 434–445.

    Google Scholar 

  24. R. Seetharam, S.K. Subbu, and M.J. Davidson, Hot Workability and Densification Behavior of Sintered Powder Metallurgy Al-B4C Preforms During Upsetting, J. Manuf. Process., 2017, 28, p 309–318.

    Google Scholar 

  25. R. Clinktan, V. Senthil, K.R. Ramkumar, S. Sivasankaran, and F.A. Al-Mufadi, Effect of Boron Carbide Nano Particles in CuSi4Zn14 Silicone Bronze Nanocomposites on Matrix Powder Surface Morphology and Structural Evolution via Mechanical Alloying, Ceram. Int., 2019, 45, p 3492–3501.

    Google Scholar 

  26. R. Clinktan, V. Senthil, K.R. Ramkumar, S. Sivasankaran, and Fahad A. Al-Mufadi, Influence of B4C Nanoparticles on Mechanical Behaviour of Silicon Brass Nanocomposite Through Mechanical Alloying and Hot Pressing, Ceram. Int., 2019, 45, p 3492–3501.

    Google Scholar 

  27. R. Seetharam, S.K. Subbu, and M.J. Davidson, Microstructure Modeling of Dynamically Recrystallization Grain Size of Al-4%B4C Composite During Hot Upsetting, J. Eng. Mater. Techno., 2018, 1401(2), p 021003.

    Google Scholar 

  28. F. Chen, Z. Cui, and S. Chen, Recrystallization of 30Cr2Ni4MoV Ultra-Super-Critical Rotor Steel During Hot Deformation. Part I: Dynamic Recrystallization, Mater. Sci. Eng. A, 2011, 528, p 5073–5080.

    Google Scholar 

  29. M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang, Hot Tensile Deformation Behaviors and Constitutive Model of an al–zn–mg–cu Alloy, Mater. Des., 2014, 59, p 141–150.

    Google Scholar 

  30. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577.

    Google Scholar 

  31. K.S. Tun, W.L. Wong, Q.B. Nguyen, and M. Gupta, Tensile and Compressive Responses of Ceramic and Metallic Nanoparticle Reinforced Mg Composites, Materials, 2013, 6(5), p 1826–1839.

    Google Scholar 

  32. Y.C. Lin, X.Y. Jianga, C.J. Shuai, C.Y. Zhao, D.G. He, M.S. Chen, and C. Chen, Effects of Initial Microstructures on Hot Tensile Deformation Behaviors and Fracture Characteristics of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2018, 711, p 293–302.

    Google Scholar 

  33. Y.C. Lin, L. Li, D.G. He, M.S. Chen, and G.Q. Liu, Effects of Pre-Treatments on Mechanical Properties and Fracture Mechanism of a Nickel-Based Superalloy, Mater. Sci. Eng. A, 2017, 679, p 401–409.

    Google Scholar 

  34. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32.

    Google Scholar 

  35. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des, 2011, 32, p 1733–1759.

    Google Scholar 

  36. W.F. Gale and T.C. Totemeier, Smithells metals reference book, 7th ed. Butterworth-Heinemann, Burlington, VT, 1992, p 1929

    Google Scholar 

  37. K.K. Alaneme, E.A. Okotete, V.A. Fajemisin, and M.A. Bodunrin, Applicability of Metallic Reinforcements for Mechanical Performance Enhancement in Metal Matrix Composites: A Review, Arab. J. Basic Appl. Sci., 2019, 26, p 311–330.

    Google Scholar 

  38. W.A. Bryant, Correlation of Data on the Hot Deformation of Ti-6Al-4V, J. Mater. Sci., 1975, 10, p 1793–1797.

    Google Scholar 

  39. A. Momeni and S.M. Abbasi, Effect of Hot Working on Flow Behavior of Ti-6Al-4V alloy in Single Phase and Two-Phase Regions, Mater. Des., 2010, 31, p 3599–3604.

    Google Scholar 

  40. S. Hao et al., Hot Deformation Behaviors of 35%SiCp/2024Al Metal Matrix Composites, Trans. Nonferrous Met. Soc. China., 2014, 24, p 2468–2474.

    Google Scholar 

  41. E. Cerri, S. Spigarelli, E. Evangelista, and P. Cavaliere, Hot Deformation and Processing Maps of a Particulate-Reinforced 6061+20% Al2O3 Composite, Mater. Sci. Eng., 2002, 324, p 157–161.

    Google Scholar 

  42. S. Spigarelli, E. Cerri, P. Cavaliere, and E. Evangelista, An Analysis of Hot Formability of the 6061+20% Al2O3 Composite by Means of Different Stability Criteria, Mater. Sci. Eng. A., 2002, 327, p 144–154.

    Google Scholar 

  43. X.X. Xia, H.J. McQueen, and P. Sakaris, Hot Deformation Mechanisms in a 10 vol% Al2O3 Particle Reinforced 6061 Al Matrix Composite, Scr. Metall. Mater., 1995, 32, p 1185–1190.

    Google Scholar 

  44. Z.Y. Huang, X.X. Zhang, B.L. Xiao, and Z.Y. Ma, Hot Deformation Mechanisms and Microstructure Evolution of SiCp/2014Al Composite, J. Alloys Compd., 2017, 722, p 145–157.

    Google Scholar 

  45. M. Ferry and P.R. Munroe, Hot Working Behaviour of Al-Al2O3 Particulate Reinforced Metal Matrix Composite, Mater. Sci. Technol., 1995, 11(7), p 633.

    Google Scholar 

  46. L. Xiaopu, L. Chongyu, L. Kun, M. Mingzhen, and L. Riping, Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering, J. Mater. Sci. & Tech., 2016, 32, p 291–297.

    Google Scholar 

  47. X.X. Xia and H.J. McQueen, Deformation Behaviour and Microstructure of a 20% Al2O3 Reinforced 6061 Al Composite, Appl. Compos. Mater., 1997, 4(6), p 333–347.

    Google Scholar 

  48. X. Wenchen, J. Xueze, X. Wendeng, Z. Xiangqian, and S. Debin, Study on Hot Deformation Behavior and Workability of Squeeze-Cast 20 vol% SiCw/6061Al Composites Using Processing Map, Mater. Charac., 2018, 135, p 154–166.

    Google Scholar 

  49. Matsui T, Takizawa H, Kikuchi H, et al. The Microstructure Prediction of Alloy 720LI for Turbine Disk Applications. 9th International Symposium on Superalloys, Champion, PA, 9–13 Sept 2000, pp. 127–133

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Seetharam or K. R. Ramkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seetharam, R., Subbu, S.K., Davidson, M.J. et al. Influence of Reinforcement Particles on Dynamically Recrystallized Grain of Hot Upset Sintered Al-B4C Composites. J. of Materi Eng and Perform 31, 9083–9096 (2022). https://doi.org/10.1007/s11665-022-06955-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06955-6

Keywords

Navigation