Skip to main content
Log in

Experimental Study of the Wear Performance of Fused Deposition Modeling Printed Polycarbonate-Acrylonitrile Butadiene Styrene Parts Using Definitive Screening Design and Machine Learning-Genetic Algorithm

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the influence of fused deposition modeling (FDM) process parameters on the tribological behavior of PC-ABS built prototypes. Wear resistance of FDM manufactured parts in relation to the variation of FDM process parameters was analyzed and studied using definitive screening design and analysis of variance technique. The worn surfaces of some fabricated samples were also analyzed and investigated in this study by scanning electron microscope. Genetic algorithm was applied to optimize the wear resistance and to identify the exact effect of the input parameters. The results obtained from this study would have an impact on the FDM product performance in various industrial applications. This study demonstrates how the manufacturing parameters can be understood in FDM additive manufacturing technology. By implementing a similar approach, the optimum setting of process parameters, which gives the best tribological properties, can be determined whenever a new material is used for the FDM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.N.M. Norani, M.F.B. Abdollah, M.I.H.C. Abdullah, H. Amiruddin, F.R. Ramli, N.. Tamaldin, Part J: Journal of Engineering Tribology, 3D Printing Parameters of Acrylonitrile Butadiene Styrene Polymer for Friction and Wear Analysis Using Response Surface Methodology, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1350650120925601 (2020)

  2. K.M. Rahman, T. Letcher, and R. Reese, Mechanical Properties of Additively Manufactured PEEK Components Using Fused Filament Fabrication, ASME International Mechanical Engineering Congress and Exposition, 2015, American Society of Mechanical Engineers, p V02AT02A009.

  3. T.A. Rodrigues, V.R. Duarte, R. Miranda, T.G. Santos and J. Oliveira, Ultracold-Wire and Arc Additive Manufacturing (UC-WAAM), J. Mater. Process. Technol., 2021, 296, p 117196.

    Article  CAS  Google Scholar 

  4. A. Haidiezul, A. Aiman, B. Bakar, Surface Finish Effects Using Coating Method on 3D Printing (FDM) Parts, IOP Conference Series: Materials Science and Engineering, 2018, IOP Publishing, p 012065.

  5. J. Lopes, C.M. Machado, V.R. Duarte, T.A. Rodrigues, T.G. Santos and J. Oliveira, Effect of Milling Parameters on HSLA Steel Parts Produced by Wire and Arc Additive Manufacturing (WAAM), J. Manuf. Process., 2020, 59, p 739–749.

    Article  Google Scholar 

  6. F.F. Conde, J.D. Escobar, J.P. Oliveira, A. Jardini, W. Bose Filho and J. Avila, Austenite Reversion Kinetics and Stability During Tempering of an Additively Manufactured Maraging 300 Steel, Addit. Manuf., 2019, 29, p 100804.

    CAS  Google Scholar 

  7. J.H. Tan, W.L.E. Wong and K.W. Dalgarno, An Overview of Powder Granulometry on Feedstock and Part Performance in the Selective Laser Melting Process, Addit. Manuf., 2017, 18, p 228–255.

    Google Scholar 

  8. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects, Adv. Manuf., 2015, 3(1), p 42–53.

    Article  CAS  Google Scholar 

  9. J. Kozak, T. Zakrzewski, Accuracy problems of additive manufacturing using SLS/SLM processes, AIP Conference Proceedings, 2018, AIP Publishing LLC, p 020010.

  10. A. Dey and N. Yodo, A Systematic Survey of FDM Process Parameter Optimization and their Influence on Part Characteristics, J. manuf. Mater. Process., 2019, 3(3), p 64.

    CAS  Google Scholar 

  11. R.B. Kristiawan, F. Imaduddin, D. Ariawan and Z. Arifin, A Review on the Fused Deposition Modeling (FDM) 3D Printing: Filament Processing, Materials, and Printing Parameters, Open Eng., 2021, 11(1), p 639–649.

    Article  CAS  Google Scholar 

  12. A.K. Sood, R. Ohdar and S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295.

    Article  CAS  Google Scholar 

  13. Y.V. Dontsov, S.V. Panin, D.G. Buslovich and F. Berto, Taguchi Optimization of Parameters for Feedstock Fabrication and FDM Manufacturing of Wear-Resistant UHMWPE-Based Composites, Materials, 2020, 13(12), p 2718.

    Article  CAS  Google Scholar 

  14. J.H. Dumbleton, Tribology of Natural and Artificial Joints, Elsevier, 1981.

    Google Scholar 

  15. A. Tsouknidas, Friction induced wear of rapid prototyping generated materials: a review, Adv. Tribol., 2011 https://doi.org/10.1155/2011/746270

    Article  Google Scholar 

  16. S.N. Cerda-Avila, H.I. Medellín-Castillo and T. Lim, An Experimental Methodology to Analyse the Structural Behaviour of FDM Parts with Variable Process Parameters, Rapid Prototype J., 2020, 26, p 1615.

    Article  Google Scholar 

  17. A. Dey, D. Hoffman and N. Yodo, Optimizing Multiple Process Parameters in Fused Deposition Modeling with Particle Swarm Optimization, Int. J. Interact. Des. Manuf., 2020, 14(2), p 393–405.

    Article  Google Scholar 

  18. S. Wang, Y. Ma, Z. Deng, S. Zhang and J. Cai, Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties of 3D Printed Polylactic Acid Materials, Polym. Test., 2020, 86, p 106483.

    Article  CAS  Google Scholar 

  19. S. Deshwal, A. Kumar and D.J. Chhabra, Exercising Hybrid Statistical Tools GA-RSM, GA-ANN and GA-ANFIS to Optimize FDM Process Parameters for Tensile Strength Improvement, CRIP J. Manuf. Sci. Technol., 2020, 31, p 189.

    Article  Google Scholar 

  20. T.E. Shelton, Z.A. Willburn, C.R. Hartsfield, G.R. Cobb, J.T. Cerri and R.A. Kemnitz, Effects of Thermal Process Parameters on Mechanical Interlayer Strength for Additively Manufactured Ultem, Polym. Test., 2020, 9085(81), p 106255.

    Article  Google Scholar 

  21. C. Camposeco-Negrete, Optimization of FDM Parameters for Improving Part Quality, Productivity and Sustainability of the Process Using Taguchi Methodology and Desirability Approach, Prog. Addit. Manuf., 2020, 5(1), p 59–65.

    Article  Google Scholar 

  22. M.S. Chaudhry and A.J.M. Czekanski, Evaluating FDM Process Parameter Sensitive Mechanical Performance of Elastomers at Various Strain Rates of Loading, Materials, 2020, 13(14), p 3202.

    Article  CAS  Google Scholar 

  23. B. Rankouhi, S. Javadpour, F. Delfanian, R. McTaggart and T. Letcher, Performance, Experimental Investigation of Mechanical Performance and Printability of Gamma-Irradiated Additively Manufactured ABS, J. Mater. Eng. Perform., 2018, 27(7), p 3643–3654.

    Article  CAS  Google Scholar 

  24. S.H. Nikam, N.K. Jain and M.S. Sawant, Optimization of Parameters of Micro-Plasma Transferred arc Additive Manufacturing Process Using Real Coded Genetic Algorithm, Int. J. Adv. Manuf. Technol., 2020, 106(3–4), p 1239–1252.

    Article  Google Scholar 

  25. Y. Zhang, C. Purssell, K. Mao and S.J. Leigh, A Physical Investigation of Wear and Thermal Characteristics of 3D Printed Nylon Spur Gears, Tribology International, 2020, 141, p 105953.

    Article  CAS  Google Scholar 

  26. F. Sojoodi Farimani, M. de Rooij, E. Hekman and S. Misra, Frictional characteristics of Fusion Deposition Modeling (FDM) Manufactured Surfaces. Rapid Prototyp. J., 2020, 26(6), p 1095–1102. https://doi.org/10.1108/RPJ-06-2019-0171.

  27. R.E. Przekop, M. Kujawa, W. Pawlak, M. Dobrosielska, B. Sztorch and W. Wieleba, Graphite Modified Polylactide (PLA) for 3D Printed (FDM/FFF) Sliding Elements, Polymers, 2020, 12(6), p 1250.

    Article  CAS  Google Scholar 

  28. H. Amiruddin, M.F.B. Abdollah and N.A. Norashid, Comparative Study of the Tribological Behaviour of 3D-Printed and Moulded ABS under Lubricated Condition, Mater. Res. Exp., 2019, 6(8), p 085328.

    Article  CAS  Google Scholar 

  29. N. Bankupalli, D.S. Rao and T.V. Krishna, Role of Butadiene Content on Tribological Properties of Polymeric Components Fabricated by FDM, Mater. Today Proc., 2020 https://doi.org/10.1016/j.matpr.2020.09.325

    Article  Google Scholar 

  30. T. Kozior and C. Kundera, An analysis of the impact of the FDM technology parameters on tribological properties, Tribologia, 2018 https://doi.org/10.5604/01.3001.0012.7651

    Article  Google Scholar 

  31. R. Srinivasan, B.S. Babu, V.U. Rani, M. Suganthi and R.J. Dheenasagar, Comparision of Tribological Behaviour for Parts Fabricated Through Fused Deposition Modelling (FDM) Process on abs and 20% Carbon Fibre PLA, Mater. Today Proc., 2020 https://doi.org/10.1016/j.matpr.2020.03.689

    Article  Google Scholar 

  32. M.D. Beg, M.S. Khan and A.J. Khan, Investigation on Tribological Behavior of FDM Printed ABS Polymer, Int. J. Tech. Res. Appl., 2017, 5, p 75–77.

    Google Scholar 

  33. M.F.B. Abdollah, H. Amiruddin, N.A. Norashid, Tribological Properties of 3D-Printed ABS Under Paraffin Oil Lubrication, Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials, 2020, Springer, pp 13–19.

  34. M. Sudin, F. Ramli, M. Alkahari and M.J. Abdullah, Comparison of Wear Behavior of ABS and ABS Composite Parts Fabricated via Fused Deposition Modelling, Int. J. Adv. Appl. Sci., 2018, 5(1), p 164–169.

    Article  Google Scholar 

  35. J.S. Seo, H.T. Jeon and T.H. Han, Rheological Investigation of Relaxation Behavior of Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends, Polymers, 2020, 12(9), p 1916.

    Article  CAS  Google Scholar 

  36. H. Duan, M.-Q. Xin, K.-Y. Kim, J.-J. Tang and C. Engineering, The Role of Compatibilizers on the Properties of PC/ABS Alloy, J. Mater. Sci. Chem. Eng., 2017, 5(06), p 21.

    CAS  Google Scholar 

  37. B. Jones and C.J. Nachtsheim, A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects, J. Qual. Technol., 2011, 43(1), p 1–15.

    Article  Google Scholar 

  38. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT press, 1992.

    Book  Google Scholar 

  39. A. Lenart, P. Pawlus and A.J.M. Dzierwa, The Effect of Disc Surface Topography on the Dry Gross Fretting Wear of an Equal-Hardness Steel pair, Materials, 2019, 12(19), p 3250.

    Article  CAS  Google Scholar 

  40. I. Standard, B. ISO, 4287/1997, Geometrical product specifications (GPS)–Surface texture: Profile method–Terms, definitions and surface texture parameters, (1997).

  41. P.K. Gurrala and S.P. Regalla, Friction and Wear Rate Characteristics of Parts Manufactured by Fused Deposition Modelling Process, Int. J. Rapid Manuf., 2017, 6(4), p 245–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Ahmed Mohamed.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, O.A., Masood, S.H. & Bhowmik, J.L. Experimental Study of the Wear Performance of Fused Deposition Modeling Printed Polycarbonate-Acrylonitrile Butadiene Styrene Parts Using Definitive Screening Design and Machine Learning-Genetic Algorithm. J. of Materi Eng and Perform 31, 2967–2977 (2022). https://doi.org/10.1007/s11665-021-06408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06408-6

Keywords

Navigation