Skip to main content
Log in

Compression Performance with Different Build Orientation of Fused Filament Fabrication Polylactic Acid, Acrylonitrile Butadiene Styrene, and Polyether Ether Ketone

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As the most widely used additive manufacturing technology, Fused Filament Fabrication 3D printing technology has attracted more and more attention and research on its mechanical properties. In this paper, Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS) and Poly Ether-Ether Ketone (PEEK) materials are selected as the research objects to study the material correlation of the compression performance of the printed parts in different build orientations. Under the premise of ensuring that the other process parameters are basically the same, the comparison test results show that, the compressive strength of PLA and PEEK in build orientation Z1 is larger than that in build orientation Z2. On the contrary, the compressive strength of ABS in build orientation Z2 is larger, which reflects the material correlation of mechanical properties. The cone beam Computed Tomography nondestructive testing and Field Emission Scanning Electron Microscope are used to scan the test pieces before and after the experiment. According to the analysis of the testing images, the interlaminar pores caused in the printing process are the main reasons for the different performance responses and structural damage of the test pieces under the compression load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. K.V. Wong and A. Hernandez, A Review of Additive Manufacturing, ISRN Mech. Eng., 2012, 2012, p 1–10.

    Article  Google Scholar 

  2. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143(February), p 172–196.

    Article  CAS  Google Scholar 

  3. J.W. Stansbury and M.J. Idacavage, 3D Printing with Polymers: Challenges among Expanding Options and Opportunities, Dental Materials, 2016, 32, p 54–64.

    Article  CAS  Google Scholar 

  4. A.D. Valino, J.R.C. Dizon, A.H. Espera, Q. Chen, J. Messman and R.C. Advincula, Advances in 3D Printing of Thermoplastic Polymer Composites and Nanocomposites, Progress in Polymer Science, 2019, 98, p 101162.

    Article  CAS  Google Scholar 

  5. J. Herzberger, J.M. Sirrine, C.B. Williams and T.E. Long, Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing, Progress in Polymer Science, 2019, 97, p 101144.

    Article  CAS  Google Scholar 

  6. W.J. Choi, K.S. Hwang, H.J. Kwon, C. Lee, C.H. Kim, T.H. Kim, S.W. Heo, J.H. Kim and J.Y. Lee, Rapid Development of Dual Porous Poly(Lactic Acid) Foam Using Fused Deposition Modeling (FDM) 3D Printing for Medical Scaffold Application, Mater. Sci. Eng. C, 2019, 2020, p 110.

    Google Scholar 

  7. N.A.S. Mohd Pu’ad, R.H. Abdul Haq, H. Mohd Noh, H.Z. Abdullah, M.I. Idris and T.C. Lee, Review on the Fabrication of Fused Deposition Modelling (FDM) Composite Filament for Biomedical Applications, Mater. Today Proc., 2019, 29, p 228–232.

    Article  Google Scholar 

  8. X. Wang, M. Jiang, Z. Zhou, J. Gou and D. Hui, 3D Printing of Polymer Matrix Composites: A Review and Prospective, Compos. Part B Eng., 2017, 110(FEB), p 442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  9. B. Caulfield, P.E. McHugh and S. Lohfeld, Dependence of Mechanical Properties of Polyamide Components on Build Parameters in the SLS Process, J. Mater. Process. Technol., 2007, 182(1–3), p 477–488.

    Article  CAS  Google Scholar 

  10. C.R. Garcia, J. Correa, D. Espalin, J.H. Barton, R.C. Rumpf, R. Wicker and V. Gonzalez, 3D Printing of Anisotropic Metamaterials, Prog. Electromagn. Res. Lett., 2012, 34, p 75–82.

    Article  Google Scholar 

  11. M. Bardot and M.D. Schulz, Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3d Printing, Nanomaterials, 2020, 10(12), p 1–20.

    Article  Google Scholar 

  12. S. Farah, D.G. Anderson and R. Langer, Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications: A Comprehensive Review, Adv. Drug Deliv. Rev., 2016, 107, p 367–392.

    Article  CAS  Google Scholar 

  13. D. da Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman and A. Schroeder, Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems, Chem. Eng. J., 2018, 340(January), p 9–14. https://doi.org/10.1016/j.cej.2018.01.010

    Article  CAS  Google Scholar 

  14. C. Esposito Corcione, F. Gervaso, F. Scalera, F. Montagna, A. Sannino and A. Maffezzoli, The Feasibility of Printing Polylactic Acid-Nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer, J. Appl. Polym. Sci., 2017, 134(13), p 1–10.

    Article  Google Scholar 

  15. S. Dul, L. Fambri and A. Pegoretti, Fused Deposition Modelling with ABS-Graphene Nanocomposites, Compos. Part A Appl. Sci. Manuf., 2016, 85, p 181–191.

    Article  CAS  Google Scholar 

  16. Q. Sun, G.M. Rizvi, C.T. Bellehumeur and P. Gu, Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments, Rapid Prototyp. J., 2008, 14(2), p 72–80.

    Article  Google Scholar 

  17. P. Tran, T.D. Ngo, A. Ghazlan and D. Hui, Bimaterial 3D Printing and Numerical Analysis of Bio-Inspired Composite Structures under in-Plane and Transverse Loadings, Compos. Part B Eng., 2017, 108, p 210–223.

    Article  CAS  Google Scholar 

  18. A.M. Oviedo, A.H. Puente, C. Bernal and E. Pérez, Mechanical Evaluation of Polymeric Filaments and Their Corresponding 3D Printed Samples, Polym. Test., 2019, 2020, p 88.

    Google Scholar 

  19. A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane and M.E. Touhami, Optimization of Printing Parameters for Improvement of Mechanical and Thermal Performances of 3D Printed Poly(Ether Ether Ketone) Parts, J. Appl. Polym. Sci., 2020, 137(37), p 1–14.

    Article  Google Scholar 

  20. H. Zou, W. Yin, C. Cai, B. Wang, A. Liu, Z. Yang, Y. Li and X. He, The Out-of-Plane Compression Behavior of Cross-Ply AS4/PEEK Thermoplastic Composite Laminates at High Strain Rates, Materials, 2018, 11(11), p 2312.

    Article  Google Scholar 

  21. S.M. Lai, W.L. Wu and Y.J. Wang, Annealing Effect on the Shape Memory Properties of Polylactic Acid (PLA)/Thermoplastic Polyurethane (TPU) Bio-Based Blends, J. Polym. Res., 2016 https://doi.org/10.1007/s10965-016-0993-6

    Article  Google Scholar 

  22. Y. Wang, J. Liu, L. Xia, M. Shen and Z. Xin, Super-Tough Poly(Lactic Acid) Thermoplastic Vulcanizates with Heat Triggered Shape Memory Behaviors Based on Modified Natural Eucommia Ulmoides Gum, Polym. Test., 2019, 80, p 106077.

    Article  CAS  Google Scholar 

  23. F. Saenz, C. Otarola, K. Valladares and J. Rojas, Influence of 3D Printing Settings on Mechanical Properties of ABS at Room Temperature and 77 K, Addit. Manuf., 2020, 2021, p 39.

    Google Scholar 

  24. D. Popescu, A. Zapciu, C. Amza, F. Baciu and R. Marinescu, FDM Process Parameters Influence over the Mechanical Properties of Polymer Specimens: A Review, Polym. Test., 2018, 69(April), p 157–166.

    Article  CAS  Google Scholar 

  25. M.M. Prabhakar, A.K. Saravanan, A.H. Lenin, I.J. Leno, K. Mayandi and P.S. Ramalingam, A Short Review on 3D Printing Methods, Process Parameters and Materials, Mater. Today Proc., 2020, 45, p 6108–6114.

    Article  Google Scholar 

  26. P.K. Mishra, P. Senthil, S. Adarsh and M.S. Anoop, An Investigation to Study the Combined Effect of Different Infill Pattern and Infill Density on the Impact Strength of 3D Printed Polylactic Acid Parts, Compos. Commun., 2020, 2021(24), 100605. https://doi.org/10.1016/j.coco.2020.100605

    Article  Google Scholar 

  27. R. Torre, S. Brischetto and I.R. Dipietro, Buckling Developed in 3D Printed PLA Cuboidal Samples under Compression: Analytical, Numerical and Experimental Investigations, Addit. Manuf., 2020, 2021(38), 101790. https://doi.org/10.1016/j.addma.2020.101790

    Article  CAS  Google Scholar 

  28. H. Dou, Y. Cheng, W. Ye, D. Zhang, J. Li, Z. Miao and S. Rudykh, Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites, Materials, 2020, 13(17), p 3850. https://doi.org/10.3390/ma13173850

    Article  CAS  Google Scholar 

  29. Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee and V.L. Tagarielli, Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA, Mater. Des., 2017, 123, p 154–164. https://doi.org/10.1016/j.matdes.2017.03.051

    Article  CAS  Google Scholar 

  30. A.K. Sood, R.K. Ohdar and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295.

    Article  CAS  Google Scholar 

  31. L. Wang, S. Jiang, C. Huang, P. Dai, F. Liu, X. Qi and G. Xu, Properties of Abs/Organic-Attapulgite Nanocomposites Parts Fabricated by Fused Deposition Modeling, J. Renew. Mater., 2020, 8(11), p 1505–1518.

    Article  CAS  Google Scholar 

  32. M. Somireddy, C.V. Singh and A. Czekanski, Analysis of the Material Behavior of 3D Printed Laminates Via FFF, Exp. Mech., 2019, 59(6), p 871–881.

    Article  Google Scholar 

  33. A. Dey and N. Yodo, A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics, J. Manuf. Mater. Process., 2019, 3(3), p 64.

    CAS  Google Scholar 

  34. A. Alafaghani, A. Qattawi, B. Alrawi and A. Guzman, Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach, Procedia Manuf., 2017, 10, p 791–803.

    Article  Google Scholar 

  35. A.E. Tontowi, L. Ramdani, R.V. Erdizon and D.K. Baroroh, Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part, Int. J. Eng. Technol., 2017, 9(2), p 589–600.

    Article  CAS  Google Scholar 

  36. C.C. Wang, T.W. Lin and S.S. Hu, Optimizing the Rapid Prototyping Process by Integrating the Taguchi Method with the Gray Relational Analysis, Rapid Prototyp. J., 2007, 13(5), p 304–315.

    Article  Google Scholar 

  37. A. Bagsik and V. Schöppner, Mechanical Properties of Fused Deposition Modeling Parts Manufactured with Ultem*9085, Ann. Tech. Conf. ANTEC Conf. Proc., 2011, 2(February), p 1294–1298.

    Google Scholar 

  38. T. Letcher, B. Rankouhi and S. Javadpour, Experimental Study of Mechanical Properties of Additively Manufactured Abs Plastic as a Function of Layer Parameters, ASME Int. Mech. Eng. Congr. Expo. Proc, 2015 https://doi.org/10.1115/IMECE2015-52634

    Article  Google Scholar 

  39. B.H. Lee, J. Abdullah and Z.A. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, J. Mater. Process. Technol., 2005, 169(1), p 54–61.

    Article  CAS  Google Scholar 

  40. X. Wang, L. Zhao, J.Y.H. Fuh and H.P. Lee, Effect of Porosity on Mechanical Properties of 3D Printed Polymers: Experiments and Micromechanical Modeling Based on X-Ray Computed Tomography Analysis, Polymers, 2019, 11(7), p 1154.

    Article  Google Scholar 

  41. T. Hofstätter, D.B. Pedersen, G. Tosello and H.N. Hansen, Applications of Fiber-Reinforced Polymers in Additive Manufacturing, Procedia CIRP, 2017, 66, p 312–316.

    Article  Google Scholar 

  42. Y. Zhang, S. Niu, Z. Du, J. Hao and J. Yang, Dynamic Fracture Evolution of Tight Sandstone under Uniaxial Compression in High Resolution 3D X-Ray Microscopy, J. Pet. Sci. Eng., 2020, 195, 107585. https://doi.org/10.1016/j.petrol.2020.107585

    Article  CAS  Google Scholar 

  43. S.H. Ahn, M. Montero, D. Odell, S. Roundy and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8(4), p 248–257.

    Article  Google Scholar 

  44. T.D. McLouth, J.V. Severino, P.M. Adams, D.N. Patel and R.J. Zaldivar, The Impact of Print Orientation and Raster Pattern on Fracture Toughness in Additively Manufactured ABS, Addit. Manuf., 2017, 18, p 103–109.

    CAS  Google Scholar 

  45. M. Foppiano, A. Saluja and K. Fayazbakhsh, The Effect of Variable Nozzle Temperature and Cross-Sectional Pattern on Interlayer Tensile Strength Of 3D Printed ABS Specimens, Exp. Mech., 2021 https://doi.org/10.1007/s11340-021-00757-y

    Article  Google Scholar 

  46. J. Nomani, D. Wilson, M. Paulino and M.I. Mohammed, Effect of Layer Thickness and Cross-Section Geometry on the Tensile and Compression Properties of 3D Printed ABS, Mater. Today Commun., 2019, 2020, p 22.

    Google Scholar 

  47. F. Yang, D. Zhang, H. Zhang and K. Huang, Cupping Artifacts Correction for Polychromatic X-Ray Cone-Beam Computed Tomography Based on Projection Compensation and Hardening Behavior, Biomed. Signal Process. Control, 2020, 57, p 101823. https://doi.org/10.1016/j.bspc.2019.101823

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2021013).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HD, YC and DZ; data curation and investigation: HD and WY; writing—original draft: HD and YT; writing—review and editing: HD, YC and DZ; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yunyong Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, H., Ye, W., Zhang, D. et al. Compression Performance with Different Build Orientation of Fused Filament Fabrication Polylactic Acid, Acrylonitrile Butadiene Styrene, and Polyether Ether Ketone. J. of Materi Eng and Perform 31, 1925–1933 (2022). https://doi.org/10.1007/s11665-021-06363-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06363-2

Keywords

Navigation