Skip to main content
Log in

Effect of Laser Remelting on Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A high-entropy alloy coating of AlCoCrFeNi was prepared by plasma spraying and then remelted via laser remelting. The effect of laser remelting on the microstructure, mechanical properties and wear resistance of the AlCoCrFeNi coating was investigated. Particularly, the effect of surface free energy on the wear resistance of the coatings before and after remelting was explored. The results showed that the remelted AlCoCrFeNi coating retained the same single BCC solid solution structure as the as-sprayed AlCoCrFeNi coating. Besides, the defects in the coating were basically eliminated by laser remelting, leading to the porosity of the coating decreased from 4.8 to only 0.3%. Consequently, the hardness, elastic modulus and fracture toughness of the coating were enhanced by 38%, and the wear loss of the remelted AlCoCrFeNi coating was only 22% of that of the as-sprayed one. Therefore, laser remelting is a feasible method to improve the microstructure and enhance the wear resistance of the AlCoCrFeNi high-entropy alloy coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.G. Ma and Y. Zhang, Effect of Nb Addition on the Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2012, 532, p 480–486.

    Article  CAS  Google Scholar 

  2. Y. Geng, J. Chen, H. Tan, J. Cheng, and W. Liu, Vacuum Tribological Behaviors of CoCrFeNi High Entropy Alloy at Elevated Temperatures, Wear, 2020, 456–457, p 203368.

    Article  Google Scholar 

  3. Y. Yu, J. Wang, J. Yang, Z.H. Qiao, H.T. Duan, J.S. Li, J. Li, and W.M. Liu, Corrosive and Tribological Behaviors of AlCoCrFeNi-M High Entropy Alloys Under 90 wt.% H2O2 Solution, Tribol. Int., 2019, 131, p 24–32.

    Article  CAS  Google Scholar 

  4. J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Influence of Cu Content on High Temperature Oxidation Behavior of AlCoCrCuxFeNi High Entropy Alloys (x=0; 0.5; 1), Intermetallics, 2017, 84, p 52–61.

    Article  CAS  Google Scholar 

  5. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Microstructure and Electrochemical Properties of High Entropy Alloys—A Comparison with type-304 Stainless Steel, Corros. Sci., 2005, 47(9), p 2257–2279.

    Article  CAS  Google Scholar 

  6. Z.Z. Niu, Y.Z. Wang, C. Geng, J. Xu, and Y. Wang, Microstructural Evolution, Mechanical and Corrosion Behaviors of as-Annealed CoCrFeNiMox (x=0, 0.2, 0.5, 0.8, 1) High Entropy Alloys, J. Alloy Compd., 2020, 820, p 153273.

    Article  CAS  Google Scholar 

  7. W. Zhang, R. Tang, Z.B. Yang, C.H. Liu, H. Chang, J.J. Yang, J.L. Liao, Y.Y. Yang, and N. Liu, Preparation, Structure, and Properties of an AlCrMoNbZr High-Entropy Alloy Coating for Accident-Tolerant Fuel Cladding, Surf. Coat. Tech., 2018, 347, p 13–19.

    Article  CAS  Google Scholar 

  8. S. Zhao, L.X. He, X.X. Fan, C.H. Liu, J.P. Long, L. Wang, H. Chang, J. Wang, and W. Zhang, Microstructure and Chloride Corrosion Property of Nanocrystalline AlTiCrNiTa High Entropy Alloy Coating on X80 Pipeline Steel, Surf. Coat. Tech., 2019, 375, p 215–220.

    Article  CAS  Google Scholar 

  9. P. Shi, Y. Yu, N. Xiong, M. Liu, and Q. Wang, Microstructure and Tribological Behavior of a Novel Atmospheric Plasma Sprayed AlCoCrFeNi High Entropy Alloy Matrix Self-Lubricating Composite Coatings, Tribol. Int., 2020, 151, p 106470.

    Article  CAS  Google Scholar 

  10. L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu, Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating, J. Mater. Eng. Perform., 2016, 25(12), p 5513–5521.

    Article  CAS  Google Scholar 

  11. H.L. Wang, Q.B. Liu, Y.X. Guo, and H.W. Lan, MoFe1.5CrTiWAlNbx Refractory High-Entropy Alloy Coating Fabricated by Laser Cladding, Intermetallics, 2019, 115, p 106613.

    Article  CAS  Google Scholar 

  12. Y. Tian, C.Y. Lu, Y.F. Shen, and X.M. Feng, Microstructure and Corrosion Property of CrMnFeCoNi High Entropy Alloy Coating on Q235 Substrate via Mechanical Alloying Method, Surf. Interfaces, 2019, 15, p 135–140.

    Article  CAS  Google Scholar 

  13. X.R. Wang, Z.Q. Wang, T.S. Lin, and P. He, Mass Transfer Trends of AlCoCrFeNi High-Entropy Alloy Coatings on TC11 Substrate via Electrospark Computer Numerical Control Deposition, J. Mater. Process. Technol., 2017, 241, p 93–102.

    Article  CAS  Google Scholar 

  14. A. Anupam, R.S. Kottada, S. Kashyap, A. Meghwal, B.S. Murty, C.C. Berndt, and A.S.M. Ang, Understanding the Microstructural Evolution of High Entropy Alloy Coatings Manufactured by Atmospheric Plasma Spray Processing, Appl. Surf. Sci., 2020, 505, p 144117.

    Article  CAS  Google Scholar 

  15. Y.K. Mu, L.B. Zhang, L. Xu, K. Prashanth, N.Z. Zhang, X.D. Ma, Y.F. Jia, Y.L. Xu, Y.D. Jia, and G. Wang, Frictional Wear and Corrosion Behavior of AlCoCrFeNi High-Entropy Alloy Coatings Synthesized by Atmospheric Plasma Spraying, Entropy, 2020, 22(7), p 740.

    Article  CAS  Google Scholar 

  16. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A, 2015, 46(2), p 791–800.

    Article  CAS  Google Scholar 

  17. C.M. Wang, J.X. Yu, Y. Zhang, and Y. Yu, Phase Evolution and Solidification Cracking Sensibility in Laser Remelting Treatment of the Plasma-Sprayed CrMnFeCoNi High Entropy Alloy Coating, Mater Design., 2019, 182, p 108040.

    Article  CAS  Google Scholar 

  18. Z.B. Cai, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and G. Jin, Microstructure and Wear Resistance of Laser Cladded Ni-Cr-Co-Ti-V High-Entropy Alloy Coating After Laser Remelting Processing, Opt. Laser Technol., 2018, 99, p 276–281.

    Article  CAS  Google Scholar 

  19. N.N. Li, G.L. Li, H.D. Wang, J.J. Kang, T.S. Dong, and H.J. Wang, Influence of TiO2 Content on the Mechanical and Tribological Properties of Cr2O3-Based Coating, Mater. Design., 2015, 88, p 906–914.

    Article  CAS  Google Scholar 

  20. D.Y. Kwok, and A.W. Neumann, Contact angle measurement and contact angle interpretation Advances in Colloid and Interface Science., 1999, 81(3), p 167.

    CAS  Google Scholar 

  21. D. Li, and A.W. Neumann, Contact Angles on Hydrophobic Solid Surfaces and Their Interpretation, J. Colloid Interface Sci., 1992, 148(1), p 190.

    Article  CAS  Google Scholar 

  22. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, 61, p 15–22.

    Article  Google Scholar 

  23. Y. Jien-Wei, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom-Us, 2013, 65(12), p 1759.

    Article  Google Scholar 

  24. G. Jin, Z.B. Cai, Y.J. Guan, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and D. Zhang, High Temperature Wear Performance of Laser-Cladded FeNiCoAlCu High-Entropy Alloy Coating, Appl. Surf. Sci., 2018, 445, p 113.

    Article  CAS  Google Scholar 

  25. W. Ji, Z.Y. Fu, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, and F. Zhang, Mechanical Alloying Synthesis and Spark Plasma Sintering Consolidation of CoCrFeNiAl High-Entropy Alloy, J. Alloy Compd., 2014, 589, p 61–66.

    Article  CAS  Google Scholar 

  26. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Microstructure and Compressive Properties of AlCrFeCoNi High Entropy Alloy, Mater. Sci. Eng. A, 2008, 491(1–2), p 154–158.

    Article  Google Scholar 

  27. M. Vaidya, A. Prasad, A. Parakh, and B.S. Murty, Influence of Sequence of Elemental Addition on Phase Evolution in Nanocrystalline AlCoCrFeNi: Novel Approach to Alloy Synthesis Using Mechanical Alloying, Mater. Design., 2017, 126, p 37–46.

    Article  CAS  Google Scholar 

  28. C.Y. Sun, L. Li, M.W. Fu, and Q.J. Zhou, Element Diffusion Model of Bimetallic hot Deformation in Metallurgical Bonding Process, Mater Design., 2016, 94, p 433.

    Article  Google Scholar 

  29. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas, Powder Metallurgical Processing of Equiatomic AlCoCrFeNi High Entropy Alloy: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2017, 679, p 299–313.

    Article  CAS  Google Scholar 

  30. M. Barlet, J.M. Delaye, T. Charpentier, M. Gennisson, D. Bonamy, T. Rouxel, and C.L. Rountree, Hardness and Toughness of Sodium Borosilicate Glasses via Vickers’s Indentations, J. Non-Crystall. Solids, 2015, 417–418, p 66.

    Article  Google Scholar 

  31. R.D. Dukino, and M.V. Swain, Comparative Measurement of Indentation Fracture Toughness with Berkovich and Vickers Indenters, J. Am. Ceram. Soc., 2010, 75, p 3299–3304.

    Article  Google Scholar 

  32. Y.M. Liu, J.Y. Shi, Q.Q. Lu, Y.Z. Guo, R.Q. Chen, and D.C. Yin, Research Progress of Solid Surface Energy Calculation Based on Young’s Equation, Mater. Guide, 2013, 027(011), p 123–129. (in Chinese)

    Google Scholar 

  33. Z.Q. Zhang, H.D. Wang, B.S. Xu, and G.S. Zhang, Characterization of Microstructure and Rolling Contact Fatigue Performance of NiCrBSi/WC–Ni Composite Coatings Prepared by Plasma Spraying, Surf. Coat. Tech., 2015, 261, p 60.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial supports of National Natural Science Foundation of China (51675158). The authors also wish to thank Professor Lijun Yang for his help in laser remelting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-lu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Dong, Ts., Fu, Bg. et al. Effect of Laser Remelting on Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy Coating. J. of Materi Eng and Perform 30, 5728–5735 (2021). https://doi.org/10.1007/s11665-021-05806-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05806-0

Keywords

Navigation