Skip to main content
Log in

Homogenously Rare-Earth-Ion-Doped Nanoceria Synthesis in KOH-NaOH Molten Flux: Characterization and Photocatalytic Property

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Homogeneously rare-earth (RE=La, Sm and Y) ions doped CeO2 nanoparticles (NPs) with enhanced photocatalytic performance were synthesized by a facile KOH-NaOH molten flux method. XRD, TEM, EDS mapping and XPS results demonstrate that RE cations have been successfully doped into the CeO2 lattice, which leads to the lattice expansion/shrinking, and more oxygen vacancies are generated after RE ions doping. The UV-Vis DRS and PL spectra indicate that RE-doped CeO2 samples have slightly narrower band gaps and significantly reduced photo-generated electron-hole recombination rates. 5% RE ions doped CeO2 NPs show excellent photocatalytic performances and the photodegradation ratio of methylene blue (MB) increases from 71.63% of undoped CeO2 to 76.35%, 77.51% and 77.37% for 5%-La, 5%-Sm and 5%-Y-doped CeO2 NPs, respectively. The obviously reduced recombination rate of e/h+ pairs after RE ions doping may be the critical factor for the enhanced photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Li, N. Zhang, R. Wu, L. Song, G. Zhang, and H. He, Comparative Study of Moisture-Treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 Catalysts for Automobile Exhaust Emission Reactions: Effect of Core-Shell Interface, ACS Appl. Mater. Interfaces, 2020, 12(9), p 10350–10358

    Google Scholar 

  2. L. Li, B. Zhu, J. Zhang, C. Yan, and Y. Wu, Electrical Properties of Nanocube CeO2 in Advanced Solid Oxide Fuel Cells, Int. J. Hydrog. Energy, 2018, 43(28), p 12909–12916

    CAS  Google Scholar 

  3. S. Zhao, D. Kang, Y. Liu, Y. Wen, X. Xie, H. Yi, and X. Tang, Spontaneous Formation of Asymmetric Oxygen Vacancies in Transition Metal Doped CeO2Nanorods with Improved Activity for Carbonyl Sulfide Hydrolysis, ACS Catal., 2020, 10(20), p 11739

    CAS  Google Scholar 

  4. S.V. Umale, S.N. Tambat, and S.M. Sontakke, Combustion Synthesized CeO2 as an Anodic Material in Dye Sensitized Solar Cells, Mater. Res. Bull., 2017, 94, p 483–488

    CAS  Google Scholar 

  5. Y.W. Wang, X.L. Wang, X.Y. Wang, Y. Yang, C. Zhang, W.W. Sun, Y.D. Ma, Y.H. Cui, L. Wang, and Y.C. Dong, Effect of CeO2 on the Microstructure and Properties of Plasma-Sprayed Al2O3-ZrO2 Ceramic Coatings, J. Mater. Eng. Perform., 2020 https://doi.org/10.1007/s11665-020-05147-4

    Article  Google Scholar 

  6. M. Golieskardi, M. Satgunam, D. Ragurajan, M.E. Hoque, and A.M.H. Ng, Microstructural, Tribological, and Degradation Properties of Al2O3- and CeO2-Doped 3 mol.%Yttria-Stabilized Zirconia Bioceramic for Biomedical Applications, J. Mater. Eng. Perform., 2020, 29(5), p 2890–2897

    CAS  Google Scholar 

  7. R. Magudieshwaran, J. Ishii, K.C.N. Raja, C. Terashima, R. Venkatachalam, A. Fujishima, and S. Pitchaimuthu, Green and Chemical Synthesized CeO2 Nanoparticles for Photocatalytic Indoor Air Pollutant Degradation, Mater. Lett., 2019, 239, p 40–44

    CAS  Google Scholar 

  8. C. Yang, J. Yang, X. Duan, G. Hu, Q. Liu, S. Ren, J. Li, and M. Kong, Roles of Photo-generated Holes and Oxygen Vacancies in Enhancing Photocatalytic Performance over CeO2 Prepared by Molten Salt Method, Adv. Powder Technol., 2020, 31(9), p 4072

    CAS  Google Scholar 

  9. Y. Wang and H. Tian, Study on the Construction of YMnO3/CeO2 Composite PhotocatalystHeterostructure and Photocatalytic Degradation of Methyl Red, Optik, 2020, 201, p 163524

    CAS  Google Scholar 

  10. S. Veziroglu, K. Roder, O. Gronenberg, A. Vahl, O. Polonskyi, T. Strunskus, H.G. Rubahn, L. Kienle, J. Adam, J. Fiutowski, F. Faupel, and O.C. Aktas, Cauliflower-like CeO2-TiO2 Hybrid Nanostructures with Extreme Photocatalytic and Self-cleaning Properties, Nanoscale, 2019, 11(20), p 9840–9844

    CAS  Google Scholar 

  11. V. Balakumar, H. Kim, R. Manivannan, H. Kim, J.W. Ryu, G. Heo, and Y.A. Son, Ultrasound-assisted Method to Improve the Structure of CeO2@polyprrole Core-shell Nanosphere and its Photocatalytic Reduction of Hazardous Cr6+, UltrasonSonochem, 2019, 59, p 104738

    CAS  Google Scholar 

  12. C. Chen, M. Li, Y. Jia, R. Chong, L. Xu, and X. Liu, Surface Defect-Engineered Silver Silicate/Ceria p-n Heterojunctions with a Flower-like Structure for Boosting Visible Light Photocatalysis with Mechanistic Insight, J. Colloid Interface Sci., 2020, 564, p 442–453

    CAS  Google Scholar 

  13. K. Ye, Y. Li, H. Yang, M. Li, Y. Huang, S. Zhang, and H. Ji, An Ultrathin Carbon Layer Activated CeO2 Heterojunction Nanorods for Photocatalytic Degradation of Organic Pollutants, Appl. Catal. B, 2019, 259, p 118085

    CAS  Google Scholar 

  14. S. He, C. Yan, X.-Z. Chen, Z. Wang, T. Ouyang, M.-L. Guo, and Z.-Q. Liu, Construction of Core-shell Heterojunction Regulating α-Fe2O3 Layer on CeO2 Nanotube Arrays Enables Highly Efficient Z-scheme Photoelectrocatalysis, Appl. Catal. B, 2020, 276, p 119138

    CAS  Google Scholar 

  15. A. Wang, Z. Zheng, H. Wang, Y. Chen, C. Luo, D. Liang, B. Hu, R. Qiu, and K. Yan, 3D Hierarchical H2-Reduced Mn-doped CeO2Microflowers Assembled from Nanotubes as a High-Performance Fenton-like Photocatalyst for Tetracycline Antibiotics Degradation, Appl. Catal. B, 2020, 277, p 119171

    CAS  Google Scholar 

  16. F. Pan, X. Xiang, Z. Du, E. Sarnello, T. Li, and Y. Li, Integrating Photocatalysis and Thermocatalysis to Enable Efficient CO2 Reforming of Methane on Pt Supported CeO2 with Zn Doping and Atomic Layer Deposited MgO Overcoating, Appl. Catal. B, 2020, 260, p 118189

    CAS  Google Scholar 

  17. M. Zeng, Y. Li, M. Mao, J. Bai, L. Ren, and X. Zhao, Synergetic Effect between Photocatalysis on TiO2 and Thermocatalysis on CeO2 for Gas-Phase Oxidation of Benzene on TiO2/CeO2 Nanocomposites, ACS Catal., 2015, 5(6), p 3278–3286

    CAS  Google Scholar 

  18. M. Mittal, A. Gupta, and O.P. Pandey, Role of Oxygen Vacancies in Ag/Au Doped CeO2 Nanoparticles for Fast Photocatalysis, Sol. Energy, 2018, 165, p 206–216

    CAS  Google Scholar 

  19. I.Y. Habib, J. Burhan, F. Jaladi, C.M. Lim, A. Usman, N.T.R.N. Kumara, S.C.E. Tsang, and A.H. Mahadi, Effect of Cr Doping in CeO2 Nanostructures on Photocatalysis and H2O2 Assisted Methylene Blue Dye Degradation, Catal. Today, 2020 https://doi.org/10.1016/j.cattod.2020.04.008

    Article  Google Scholar 

  20. K. Singh, K. Kumar, S. Srivastava, and A. Chowdhury, Effect of Rare-Earth Doping in CeO2 Matrix: Correlations with Structure, Catalytic and Visible Light Photocatalytic Properties, Ceram. Int., 2017, 43(18), p 17041–17047

    CAS  Google Scholar 

  21. K. Singh, R. Kumar, and A. Chowdhury, Synthesis of La-doped Ceria Nanoparticles: Impact of Lanthanum Depletion, J. Mater. Sci., 2016, 51(8), p 4134–4141

    CAS  Google Scholar 

  22. T. Vinodkumar, B.G. Rao, and B.M. Reddy, Influence of Isovalent and Aliovalent Dopants on the Reactivity of Cerium Oxide for Catalytic Applications, Catal. Today, 2015, 253, p 57–64

    CAS  Google Scholar 

  23. S. Chahal, N. Rani, A. Kumar, and P. Kumar, Electronic Structure and Photocatalytic Activity of Samarium Doped Cerium Oxide Nanoparticles for Hazardous Rose Bengal Dye Degradation, Vacuum, 2020, 172, p 109075

    CAS  Google Scholar 

  24. B. Xu, Q. Zhang, S. Yuan, S. Liu, M. Zhang, and T. Ohno, Synthesis and Photocatalytic Performance of Yttrium-Doped CeO2 with a Hollow Sphere Structure, Catal. Today, 2017, 281, p 135–143

    CAS  Google Scholar 

  25. H. Yang, B. Xu, S. Yuan, Q. Zhang, M. Zhang, and T. Ohno, Synthesis of Y-Doped CeO2/PCN Nanocomposited Photocatalyst with Promoted Photoredox Performance, Appl. Catal. B, 2019, 243, p 513–521

    CAS  Google Scholar 

  26. M. Ramachandran, R. Subadevi, and M. Sivakumar, Role of pH on Synthesis and Characterization of Cerium Oxide (CeO2) Nano Particles by Modified Co-Precipitation Method, Vacuum, 2019, 161, p 220–224

    CAS  Google Scholar 

  27. K. Kaviyarasu, X. Fuku, G.T. Mola, E. Manikandan, J. Kennedy, and M. Maaza, Photoluminescence of Well-Aligned ZnO Doped CeO2Nanoplatelets by a Solvothermal Route, Mater. Lett., 2016, 183, p 351–354

    CAS  Google Scholar 

  28. X. Ma, P. Lu, and P. Wu, Structural, Optical and Magnetic Properties of CeO2 Nanowires with Nonmagnetic Mg2+ Doping, J. Alloy. Compd., 2018, 734, p 22–28

    CAS  Google Scholar 

  29. K. Kato, S. Lee, and F. Nagata, Catalytic Performance of Ceria Fibers with Phosphatase-like Activity and their Application as Protein Carriers, Adv. Powder Technol., 2020, 31(7), p 2880–2889

    CAS  Google Scholar 

  30. R. Bakkiyaraj, M. Balakrishnan, G. Bharath, and N. Ponpandian, Facile Synthesis, Structural Characterization, Photocatalytic and Antimicrobial Activities of Zr Doped CeO2 Nanoparticles, J. Alloy. Compd., 2017, 724, p 555–564

    CAS  Google Scholar 

  31. F. Bondioli, A.B. Corradi, and C. Leonelli, Nanosized CeO2 Powders Obtained by Flux Method, Mater. Res. Bull., 1999, 34(14/15), p 2159–2166

    CAS  Google Scholar 

  32. L.-H. Zhu, Q.-W. Huang, and W. Liu, Synthesis of Plate-like α-Al2O3 Single-Crystal Particles in NaCl–KCl Flux Using Al(OH)3 Powders as Starting Materials, Ceram. Int., 2008, 34(7), p 1729–1733

    CAS  Google Scholar 

  33. Y.P. Lan, H.Y. Sohn, A. Murali, J. Li, and C. Chen, The Formation and Growth of CeOCl Crystals in a Molten KCl-LiCl flux, Appl. Phys. A, 2018. https://doi.org/10.1007/s00339-018-2122-3

    Article  Google Scholar 

  34. Y.P. Lan, C. Chen, J. Li, X. Xia, X. Mao, and H. Zhou, Formation and Growth of LaOCl:Eu3+ Crystal in KCl-LiCl Molten Flux and its Luminescent Properties, Ceram. Int., 2020. https://doi.org/10.1016/j.ceramint

    Article  Google Scholar 

  35. Y.-P. Lan, H.Y. Sohn, Y. Mohassab, Q. Liu, and B. Xu, Nanoceria Synthesis in the KCl-LiCl Salt System: Crystal Formation and Properties, J. Am. Ceram. Soc., 2017, 100(5), p 1863–1875

    CAS  Google Scholar 

  36. Y.-P. Lan and H.Y. Sohn, Nanoceria Synthesis in Molten KOH-NaOH Mixture: Characterization and Oxygen Vacancy Formation, Ceram. Int., 2018, 44(4), p 3847–3855

    CAS  Google Scholar 

  37. X. Xia, Y. Lan, J. Li, C. Chen, B. Xu, X. Luo, and X. Mao, Facile Synthesis of Nanoceria by a Molten Hydroxide Method and its Photocatalytic Properties, J. Rare Earths, 2020, 38(9), p 951–960

    CAS  Google Scholar 

  38. R.A.C. Amoresi, R.C. Oliveira, N.L. Marana, P.B. de Almeida, P.S. Prata, M.A. Zaghete, E. Longo, J.R. Sambrano, and A.Z. Simões, CeO2 Nanoparticle Morphologies and Their Corresponding Crystalline Planes for the Photocatalytic Degradation of Organic Pollutants, ACS Appl. Nano Mater., 2019, 2(10), p 6513–6526

    CAS  Google Scholar 

  39. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, Electron Localization Determines Defect Formation on Ceria Substrates, Science, 2005, 309(5735), p 752–755

    CAS  Google Scholar 

  40. S. Isarapakdeetham, P. Kim-Lohsoontorn, S. Wongsakulphasatch, W. Kiatkittipong, N. Laosiripojana, J. Gong, and S. Assabumrungrat, Hydrogen Production via chemical Looping Steam Reforming of Ethanol by Ni-based Oxygen Carriers Supported on CeO2 and La2O3 Promoted Al2O3, Int. J. Hydrog. Energy, 2020, 45(3), p 1477–1491

    CAS  Google Scholar 

  41. P. Tepamatr, N. Laosiripojana, T. Sesuk, and S. Charojrochkul, Effect of Samarium and Praseodymium Addition on Water Gas Shift Performance of Co/CeO2 Catalysts, J. Rare Earths, 2020, 38(11), p 1201–1206

    CAS  Google Scholar 

  42. S.-J. Liu, T.-J. Peng, Z. Song, L. Bian, G.-B. Song, and Q.-L. Liu, Solid Solubility and Photoluminescence of Y3Al5O12:Ce3+ Prepared by Using (Y1−xCex )2O3 as Precursor, Chin. Phys. B, 2014, 23(4), p 048106

    Google Scholar 

  43. Z.X. Cui, Y.N. Feng, Y.Q. Xue, J. Zhang, R. Zhang, J. Hao, and J.Y. Liu, Shape Dependence of Thermodynamics of Adsorption on Nanoparticles: a Theoretical and Experimental Study, Phys. Chem. Chem. Phys., 2018, 20(47), p 29959–29968

    CAS  Google Scholar 

  44. J.C. Cano-Franco and M. Álvarez-Láinez, Effect of CeO2 Content in Morphology and Optoelectronic Properties of TiO2-CeO2 Nanoparticles in Visible Light Organic Degradation, Mater. Sci. Semicond. Process., 2019, 90, p 190–197

    CAS  Google Scholar 

  45. S. Chahal, S. Singh, A. Kumar, and P. Kumar, Oxygen-Deficient Lanthanum Doped Cerium Oxide Nanoparticles for Potential Applications in Spintronics and Photocatalysis, Vacuum, 2020, 177, p 109395

    CAS  Google Scholar 

  46. S. Chahal, N. Rani, A. Kumar, and P. Kumar, UV-irradiated Photocatalytic Performance of Yttrium Doped Ceria for Hazardous Rose Bengal Dye, Appl. Surf. Sci., 2019, 493, p 87–93

    CAS  Google Scholar 

  47. L. Fan, K. Wang, K. Xu, Z. Liang, H. Wang, S.F. Zhou, and G. Zhan, Structural Isomerism of Two Ce-BTC for Fabricating Pt/CeO2Nanorods Toward Low-Temperature CO Oxidation, Small, 2020, 16, p e2003597

    Google Scholar 

  48. B. Xu, H. Yang, Q. Zhang, S. Yuan, A. Xie, M. Zhang, and T. Ohno, Design and Synthesis of Sm, Y, La and Nd-doped CeO2 with a Broom-like Hierarchical Structure: a Photocatalyst with Enhanced Oxidation Performance, ChemCatChem, 2020, 12(9), p 2638–2646

    CAS  Google Scholar 

  49. S.A.A. El-Enein, A.M. Ali, Y.K. Abdel-Monem, M.H. Senna, and M. Madkour, Novel Lanthanide(III) 4-methylbenzoylhydrazide Complexes as Precursors for Lanthanide Oxide Nanophotocatalysts, RSC Adv., 2019, 9(72), p 42010–42019

    CAS  Google Scholar 

  50. A.R. Rajan, V. Vilas, A. Rajan, A. John, and D. Philip, Synthesis of Nanostructured CeO2 by Chemical and Biogenic Methods: Optical Properties and Bioactivity, Ceram. Int., 2020, 46(9), p 14048–14055

    CAS  Google Scholar 

  51. W. Zou, B. Deng, X. Hu, Y. Zhou, Y. Pu, S. Yu, K. Ma, J. Sun, H. Wan, and L. Dong, Crystal-Plane-Dependent Metal Oxide-Support Interaction in CeO2/g-C3N4 for Photocatalytic Hydrogen Evolution, Appl. Catal. B, 2018, 238, p 111–118

    CAS  Google Scholar 

  52. W.-H. Zhao, Z.-Q. Wei, X.-J. Wu, X.-D. Zhang, L. Zhang, and X. Wang, Microstructure and Photocatalytic Activity of Ni-doped ZnSNanorods Prepared by Hydrothermal Method, Trans. Nonfer. Metals Soc. China, 2019, 29(1), p 157–164

    CAS  Google Scholar 

  53. M. Alagar, Synthesis Structural and Optical Behavior of Cerium Oxide Nanoparticles by Co-Precipitation Method, Int. J. Sci. Res. Sci. Technol., 2018, 4(5), p 962–1013

    Google Scholar 

  54. Y.A.S. Khadar, A. Balamurugan, V.P. Devarajan, and R. Subramanian, Hydrothermal Synthesis of Gadolinium (Gd) Doped Cerium Oxide (CeO2) Nanoparticles: Characterization and Antibacterial Activity, Orient. J. Chem., 2017, 33(5), p 2405–2411

    CAS  Google Scholar 

  55. M.K. Kesarla, M.O. Fuentez-Torres, M.A. Alcudia-Ramos, F. Ortiz-Chi, C.G. Espinosa-González, M. Aleman, J.G. Torres-Torres, and S. Godavarthi, Synthesis of g-C3N4/N-Doped CeO2 Composite for Photocatalytic Degradation of an Herbicide, J. Market. Res., 2019, 8(2), p 1628–1635

    CAS  Google Scholar 

  56. A. Phuruangrat, S. Thongtem, and T. Thongtem, Microwave-assisted Hydrothermal Synthesis and Characterization of CeO2 Nanowires for Using as a Photocatalytic Material, Mater. Lett., 2017, 196, p 61–63

    CAS  Google Scholar 

  57. A. Younis, D. Chu, Y.V. Kaneti, and S. Li, Tuning the Surface Oxygen Concentration of 111 Surrounded Ceria Nanocrystals for Enhanced Photocatalytic Activities, Nanoscale, 2016, 8(1), p 378–387

    CAS  Google Scholar 

  58. W.M. El Rouby, A.A. Farghali, and A. Hamdedein, Microwave Synthesis of Pure and Doped Cerium (IV) Oxide (CeO2) Nanoparticles for Methylene Blue Degradation, Water SciTechnol, 2016, 74(10), p 2325–2336

    Google Scholar 

  59. M.A. Rauf and S.S. Ashraf, Fundamental Principles and Application of Heterogeneous Photocatalytic Degradation of Dyes in Solution, Chem. Eng. J., 2009, 151(1–3), p 10–18

    CAS  Google Scholar 

  60. R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, and A. Stephen, Visible Light Induced Degradation of Methylene Blue Using CeO2/V2O5 and CeO2/CuO Catalysts, Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33(8), p 4725–4731

    CAS  Google Scholar 

  61. W. Wen, Z. Lou, Y. Chen, D. Chen, S. Tian, and Y. Xiong, Tuning the Structural Properties of CeO2 by Pr and Fe Codoping for Enhanced Visible-Light Catalytic Activity, J. Chem. Technol. Biotechnol., 2019, 94(5), p 1576–1584

    CAS  Google Scholar 

  62. A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, and K.J. Balkus, Synthesis, Characterization, and Photocatalytic Activity of Y-Doped CeO2Nanorods, ACS Catal., 2014, 4(2), p 577–584

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support from National Natural Science Foundation of China under Grant No. 51804088 and 52074096, the Talents & Platform Funding from Science & Technology Department of Guizhou Province, China, under the Grant No. [2017]5788 and [2018]5781, the Basic Research Program from Science & Technology Department of Guizhou Province [2020]1Y219 and [2019]1082, and the Cultivation Funding of No. 2019[30] and Doctor Funding of No. (2017)04 supported by Guizhou University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Pei Lan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Xia, X., Li, J. et al. Homogenously Rare-Earth-Ion-Doped Nanoceria Synthesis in KOH-NaOH Molten Flux: Characterization and Photocatalytic Property. J. of Materi Eng and Perform 30, 3795–3805 (2021). https://doi.org/10.1007/s11665-021-05683-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05683-7

Keywords

Navigation