Skip to main content
Log in

A Numerical–Experimental Study of Wear Resistance of FeB/Fe2B Systems

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, the tribological performance of two FeB/Fe2B systems formed at the surface of an AISI 316L stainless steel was evaluated experimentally as well as numerically using the configuration rotatory pin-on-disk test, without lubricant and using a ball as a counterpart. The wear tests were carried out along a circular path under two applied loads of 5 and 10 N and a constant sliding distance. The wear coefficient was obtained by Archard’s model. Experimental results of the wear test exhibited that the FeB/Fe2B system with the thinner thickness developed more severe wear. The principal stresses and the maximum shear stress at the beginning and at the end of the pin-on-disk test were assessed by means of the finite element method. Mesh nonlinear adaptivity was used in the numerical model of the pin-on-disk test to fix mesh distortion caused by the surface wear. As the pin-on-disk test progressed and the material was removed, it caused a non-uniform contact pressure on the contact zone, which generated high stress at small areas of boride layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Schuhler, A. Jourani, S. Bouvier, and J.M. Perrochat, Efficacy of Coatings and Thermochemical Treatment to Improve Wear Resistance of Axial Piston Pumps, Tribol. Int., 2018, 126, p 376–385

    Article  CAS  Google Scholar 

  2. B. Suh and W. Lee, Surface Hardening of AISI, 316L Stainless Steel Using Plasma Carburizing, Thin Solid Films, 1997, 295, p 185–192

    Article  CAS  Google Scholar 

  3. V. Singh, K. Marchev, C. Cooper, and E. Meletis, Intensified Plasma-Assisted Nitriding of AISI, 316L Stainless Steel, Surf. Coat. Technol., 2002, 160, p 249–258

    Article  CAS  Google Scholar 

  4. A.P. Krelling, C.E. da Costa, J.C.G. Milan, and E.A.S. Almeida, Micro-abrasive Wear Mechanisms of Borided AISI, 1020 Steel, Tribol. Int., 2017, 111, p 234–242

    Article  CAS  Google Scholar 

  5. J. Lubas, Practical Application of Boron-Modified Sliding Pairs in I.C. Engine, Tribol. Int., 2010, 43, p 2046–2050

    Article  CAS  Google Scholar 

  6. V. Peretti, S. Ferraris, G. Gautier, C. Hellmich, O. Lahayne, B. Stella, S. Yamaguchi, and S. Spriano, Surface Treatment for Boriding of Ti6Al14V Alloy in View of Applications as a Biomaterial, Tribol. Int., 2018, 126, p 21–28

    Article  CAS  Google Scholar 

  7. I. Gutierres-Noda, C.A. Cuau-Moreu, O. Perez-Acosta, E. Lorenzo-Bonet, P. Zambrano-Robledo, and M.A.I. Hernandez-Rodriguez, The Effect of a Boride Diffusion Layer on the Tribological Properties of AISI, M2 Steel, Wear, 2019, 426, p 1667–1671

    Article  Google Scholar 

  8. I. Ozbek, B. Konduk, C. Bindal, and A. Ucisik, Characterization of Borided AISI, 316L Stainless Steel Implant, Vacuum, 2002, 65, p 521–525

    Article  CAS  Google Scholar 

  9. G. Kartal, A. Bora, and S. Timur, Evaluating the Mechanical Behavior of Electrochemically Borided Low-Carbon Steel, Surf. Coat. Technol., 2020, 381, p 1–10

    Google Scholar 

  10. A. Graf von Matuschka, Boronizing, Carl Hanser Verlag, Munich, 1980

    Google Scholar 

  11. I. Campos, A.D. Contla, U. Figueroa, J. Martínez, A. Garduño, and M. Ortega, Sliding Wear Resistance of Nickel Boride Layers on an Inconel 718 Superalloy, Surf. Coat. Technol., 2019, 378, p 1–13

    Google Scholar 

  12. M. Keddam and S.M. Chentouf, A Diffusion Model for Describing the Bilayer Growth (FeB/Fe2B) during the Iron Powder-Pack Boriding, Appl. Surf. Sci., 2005, 252, p 393–399

    Article  CAS  Google Scholar 

  13. F. Ficici, M. Kapsiz, and M. Durant, Applications of Taguchi Design Method to Study Wear Behaviour of Boronized AISI, 1040 Steel, Int. J. Phys. Sci., 2011, 6, p 237–243

    CAS  Google Scholar 

  14. I. Turkmen, E. Yalamac, and M. Keddam, Investigation of Triboligical Behavior and Diffusion Model of Fe2B Formed by Pack-Boriding on SAE 1020 Steel, Surf. Coat. Technol., 2019, 377, p 1–12

    Article  Google Scholar 

  15. B. Selcuk, R. Ipek, and M.B. Karamis, A Study on Friction and Wear Behavior of Carburized, Carbonitrided and Borided AISI, 1020 and 5115 Steels, J. Mater. Process. Technol., 2003, 141, p 189–196

    Article  CAS  Google Scholar 

  16. M. Hafizuddin, B. Abdullah, and S.K. Alias, Wear Properties of Paste Boronized 316 Stainless Steel Before and After Shot Blasting Process, Sci. Res. J., 2014, 11, p 1–10

    Article  Google Scholar 

  17. Y. Kayali, A. Buyuksagis, and Y. Yalcin, Corrosion and Wear Behavior of Borinized AISI, 316L Stainless Steel, Met. Mater. Int., 2013, 19, p 1053–1061

    Article  CAS  Google Scholar 

  18. E. Hernández, J.C. Velázquez, J.L. Castrejón, A. Chino, I.P. Torres, R. Carrera, J.A. Yescas, and C. Orozco, Tribological Behavior of Borided AISI, 316L Steel with Reduced Friction Coefficient and Enhanced Wear Resistance, Mater. Trans., 2019, 60, p 156–164

    Article  Google Scholar 

  19. I. Campos, M. Ortiz, O. Bravo, M.A. Doñu, D. Bravo, C. Tapia, and M.Y. Jiménez, Formation and Kinetics of FeB/Fe2B Layers and Diffusion Zone at the Surface of AISI, 316 Borided Steels, Surf. Coat. Technol., 2010, 205, p 403–412

    Article  Google Scholar 

  20. Metallic Materials, Instrumented Indentation Test for Hardness and Materials Parameter-Part 4: Test Method for Metallic and Non-metallic Coating 14577, Part 4, ISO, 2007

  21. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583

    Article  CAS  Google Scholar 

  22. Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters-Part 1: Test method, ISO 14577-1, International Organization for Standardization, 2002

  23. J. Anuradha, N. Dandapat, D. Mitun, K.B. Vamsi, C. Shirshendu, S. Rajnarayan, and K.M. Awadesh, Severe Wear Behaviour of Alumina Balls Sliding Against Diamond Ceramic Coatings, Bull. Mater. Sci., 2016, 39, p 573–586

    Article  Google Scholar 

  24. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981–988

    Article  Google Scholar 

  25. I. Campos, E. Hernández, G. Rodríguez, H. Cimenoglu, J.L. Nava, A. Meneses, and R. Carrera-Espinoza, A Study of Indentation for Mechanical Characterization of the Fe2B Layer, Surf. Coat. Technol., 2013, 232, p 173–181

    Article  Google Scholar 

  26. I. Campos, M. Farah, N. López, G. Bermúdez, G. Rodríguez, and C. Villa Velázquez, Evaluation of the Tool Life and Fracture Toughness of Cutting Tools Boronized by the Paste Boriding Process, Appl. Surf. Sci., 2008, 254, p 2967–2974

    Article  CAS  Google Scholar 

  27. E.J. Hernández-Ramírez, A. Guevara-Morales, U. Figueroa-López, and I. Campos-Silva, Wear Resistance of Diffusion Annealed Borided AISI, 1018 Steel, Mater. Lett., 2020, 277, p 1–8

    Article  Google Scholar 

  28. G.A. Rodríguez, R.C. Vega, A. Meneses, H.W. Jiménez, J.A. Andraca, I.E. Campos, and M.E. Palomar, Multi-pass Scratch Test Behavior of AISI, 316L BORIDED STEEL, Surf. Coat. Technol., 2016, 307, p 491–499

    Article  Google Scholar 

  29. C. Martini, G. Palombarini, and M. Carbucicchio, Mechanism of Thermochemical Growth of Iron Borides on Iron, J. Mater. Sci., 2004, 39, p 933–937

    Article  CAS  Google Scholar 

  30. L. Qian, M. Li, Z. Zhou, H. Yang, and X. Shi, Comparison of Nano-indentation Hardness to Microhardness, Surf. Coat. Technol., 2005, 193, p 264–271

    Article  Google Scholar 

  31. A. Leyland and A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour, Wear, 2000, 246, p 1–11

    Article  CAS  Google Scholar 

  32. R. Carrera, U. Figueroa, J. Martinez, I. Campos, E. Hernández, and A. Motallebzadeh, Tribological Behavior of Borided AISI, 1018 Steel under Linear Reciprocating Slinding Conditions, Wear, 2016, 362, p 1–7

    Article  Google Scholar 

  33. D. Tabor, Hardness of Metals, Clarendon Press, Oxford, 1951

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Instituto Politécnico Nacional in Mexico [Grant Numbers 20200424].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meneses-Amador.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Valdés, D., Meneses-Amador, A., Ocampo-Ramírez, A. et al. A Numerical–Experimental Study of Wear Resistance of FeB/Fe2B Systems. J. of Materi Eng and Perform 30, 839–849 (2021). https://doi.org/10.1007/s11665-020-05368-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05368-7

Keywords

Navigation