Skip to main content
Log in

Wear Performance and Nanomechanical Behavior of Sonoelectroplated Cu-Graphene Nanocomposite Thin Films

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Few-layer graphene nanosheets (FLGN) and reduced FLGN (rFLGN) have been used as reinforcement with a copper matrix to produce nanocomposite thin film by sonoelectrodeposition method onto Cu substrates. FLGN and rFLGN used in the study were prepared by electrochemical intercalation and exfoliation technique. The phase and structures of FLGN to rFLGN were ratified then after. The prepared composite films were analyzed to confirm the matrix and reinforcement phases, and then the wear behavior has been studied in detail. It was found that all the composite films have better wear properties, i.e., low wear depth, width and rate, low coefficient of friction as compared to pure Cu films. The said improvement is mainly due to the uniform distribution of graphene in the metal matrix and increased hardness (up to 38% higher) and stiffness. Further, the wear mechanism was either abrasive or a combination of abrasive and adhesive types. The Cu-rFLGN composites did show an adhesive type of wear leading to delamination of Cu layers.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.V. Ragavan and N.K. Rastogi, Graphene-Copper Oxide Nanocomposite with Intrinsic Peroxidase Activity for Enhancement of Chemiluminescence Signals and Its Application for Detection of Bisphenol-A, Sensor Actuat. B-Chem., 2016, 229, p 570–580

    Article  CAS  Google Scholar 

  2. C. Liu, Y. Teng, R. Liu, S. Luo, Y. Tang, L. Chen, and Q. Cai, Fabrication of Graphene Films on TiO2 Nanotube Arrays for Photocatalytic Application, Carbon, 2011, 49, p 5312–5320

    Article  CAS  Google Scholar 

  3. B. Wang, X.L. Wu, C.Y. Shu, Y.G. Guo, and C.R. Wang, Synthesis of CuO/Graphene Nanocomposite as a High-Performance Anode Material for Lithium-Ion Batteries, J. Mater. Chem., 2010, 20, p 10661. https://doi.org/10.1039/c0jm01941k

    Article  CAS  Google Scholar 

  4. M. Bethencourt, F. Botana, J. Calvino, J.M. Marcos, and M.A. Rodríguez-Chacón, Graphene Based Materials and Their Composites as Coatings, Corros. Sci., 1998, 13, p 1803–1819

    Article  Google Scholar 

  5. K. Jagannadham, Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2012, 43, 316–324.

  6. T. Wejrzanowski, M. Grybczuk, M. Chmielewski, K. Pietrzak, K.J. Kurzydlowski, and A. Strojny-Nedza, Thermal Conductivity of Metal-Graphene Composites, Mater. Des., 2016, 99, p 163–173

    Article  CAS  Google Scholar 

  7. R. Jiang, X. Zhou, Q. Fang, and Z. Liu, Copper-Graphene Bulk Composites with Homogeneous Graphene Dispersion and Enhanced Mechanical Properties, Mater. Sci. Eng. A, 2016, 654, p 124–130

    Article  CAS  Google Scholar 

  8. P. Sadowski, K. Kowalczyk-Gajewska, and S. Stupkiewicz, Classical Estimates of the Effective thermoelastic Properties of Copper-Graphene Composites, Compos. B. Eng., 2015, 80, p 278–290

    Article  CAS  Google Scholar 

  9. K. Rajkumar and S. Aravindan, Tribological Performance of Microwave Sintered Copper-TiC-Graphite Hybrid Composites, Tribol. Int., 2011, 44, p 347–358

    Article  CAS  Google Scholar 

  10. J.F. Li, L. Zhang, J.K. Xiao, and K.C. Zhou, Sliding Wear Behavior of Copper-Based Composites Reinforced with Graphene Nanosheets and Graphite, T. Nonferr. Metal. Soc., 2015, 25, p 3354–3362

    Article  CAS  Google Scholar 

  11. L. Xia, B. Jia, J. Zeng, and J. Xu, Wear and Mechanical Properties of Carbon Fiber Reinforced Copper Alloy Composites, Mater. Charact., 2009, 60, p 363–369

    Article  CAS  Google Scholar 

  12. G. Zhang, G. Xie, J. Wang, L. Si, D. Guo, S. Wen, and F. Yang, Controlled Friction Behaviors of Porous Copper/Graphite Storing Ionic Liquid through Electrical Stimulation, Adv. Eng. Mater., 2018, 20, p 1700866

    Article  Google Scholar 

  13. V. Zin, K. Brunelli, and M. Dabalà, Characterization of Cu-Ni Alloy Electrodeposition and Synthesis of Nanoparticles by Pulsed Sonoelectrochemistry, Mater. Chem. Phys., 2014, 144, p 272–279

    Article  CAS  Google Scholar 

  14. S. Chen, L. Brown, M. Levendorf, W. Cai, S.Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, and R.S. Ruoff, Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy, ACS Nano, 2011, 5, p 1321–1327

    Article  CAS  Google Scholar 

  15. P. Garg, P. Gupta, D. Kumar, and O. Parkash, Structural and Mechanical Properties of Graphene Reinforced Aluminum Matrix Composites, J. Mater. Environ. Sci., 2016, 7, p 1461–1473

    CAS  Google Scholar 

  16. F.C. Walsh and C.T.J. Low, A Review of Developments in the Electrodeposition of Tin-Copper Alloys, Surf. Coat., 2016, 304, p 246–262

    Article  CAS  Google Scholar 

  17. G. Huang, H. Wang, P. Cheng, H. Wang, B. Sun, S. Sun, C. Zhang, M. Chen, and G. Ding, Preparation and Characterization of the Graphene-Cu Composite Film by Electrodeposition Process, Microelectron. Eng., 2016, 157, p 7–12

    Article  CAS  Google Scholar 

  18. K. Rajkumar and S. Aravindan, Tribological Studies on Microwave Sintered Copper-Carbon Nanotube Composites, Wear, 2011, 270, p 613–621

    Article  CAS  Google Scholar 

  19. G. Song, Y. Yang, Q. Fu, and C. Pan, Preparation of Cu-Graphene Composite Thin Foils via DC Electro-Deposition and Its Optimal Conditions for Highest Properties, J. Electrochem. Soc., 2017, 164, p D652–D659

    Article  CAS  Google Scholar 

  20. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, 306, p 666–669

    CAS  Google Scholar 

  21. C.H. Chuang, C.Y. Su, K.T. Hsu, C.H. Chen, C.H. Huang, C.W. Chu, and W.R. Liu, A Green, Simple and Cost-Effective Approach to Synthesize High Quality Graphene by Electrochemical Exfoliation via Process Optimization, RSC Adv., 2015, 5, p 54762–54768

    Article  CAS  Google Scholar 

  22. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, and R.S. Ruoff, Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 2007, 45, p 1558–1565

    Article  CAS  Google Scholar 

  23. K. Chen and D. Xue, Preparation of Colloidal Graphene in Quantity by Electrochemical Exfoliation, J. Colloid. Interf. Sci., 2014, 436, p 41–46

    Article  CAS  Google Scholar 

  24. M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, and R. Pan, Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminum Composites Reinforced with Graphene Nanoplatelets, Prog. Nat. Sci-Mater., 2015, 25, p 460–470

    Article  CAS  Google Scholar 

  25. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p 1–7

    Google Scholar 

  26. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan, Process Optimization for Pulse Reverse Electrodeposition of Graphene-Reinforced Copper Nanocomposites, Mater. Manuf. Process, 2016, 31, p 1439–1446

    Article  CAS  Google Scholar 

  27. G. Xie, M. Forslund, and J. Pan, Direct Electrochemical Synthesis of Reduced Graphene Oxide (rGO)/Copper Composite Films and Their Electrical/Electroactive Properties, ACS Appl. Mater. Interfaces., 2014, 6, p 7444–7455

    Article  CAS  Google Scholar 

  28. A.K. Behera, R. Chandran, S. Sarkar, and A. Mallik, An Exploration on the Use of In-house Synthesized Reduced fEw Layer Graphene Particles as a Reinforcement During Sono-electroplating of Cu Matrix Composite Films, J. Alloy. Compd., 2020, 817, p 152713

    Article  CAS  Google Scholar 

  29. X. Zhang, P. Dong, Y. Chen, W. Yang, Y. Zhan, K. Wu, and Y. Chao, Fabrication and Tribological Properties of Copper Matrix Composite with Short Carbon Fiber/Reduced Graphene Oxide Filler, Tribol. Int., 2016, 103, p 406–411

    Article  CAS  Google Scholar 

  30. P. Duda, R. Muzyka, Z. Robak, and S. Kaptacz, Mechanical Properties of Graphene Oxide-Copper Composites, Arch. Metall. Mater., 2016, 61, p 863–867

    Article  CAS  Google Scholar 

  31. Y.J. Mai, M.P. Zhou, H.J. Ling, F.X. Chen, W.Q. Lian, and X.H. Jie, Surfactant-Free Electrodeposition of Reduced Graphene Oxide/Copper Composite Coatings with Enhanced Wear Resistance, Appl. Surf. Sci., 2018, 433, p 232–239

    Article  CAS  Google Scholar 

  32. A.K. Behera and A. Mallik, Ultrasound Assisted Electroplating of Nano-composite Thin Film of Cu Matrix with Electrochemically in-house Synthesized Few Layer Graphene Nano-Sheets as Reinforcement, J. Alloy. Compd., 2018, 750, p 587–598

    Article  CAS  Google Scholar 

  33. S.K. Sahoo and A. Mallik, Simple, Fast and Cost-Effective Electrochemical Synthesis of Few Layer Graphene Nanosheets, NANO, 2015, 10, p 1550019

    Article  CAS  Google Scholar 

  34. S.K. Sahoo, S. Ratha, C.S. Rout, and A. Mallik, Physicochemical Properties and Supercapacitor Behavior of Electrochemically Synthesized Few Layered Graphene Nanosheets, J. Solid State Electr., 2016, 20, p 3415–3428

    Article  CAS  Google Scholar 

  35. J.F. Archard and W. Hirst, The Wear of Metals Under Unlubricated Conditions, Proc. R. Soc. Lond. A, 1956, 236, p 397–410

    Article  Google Scholar 

  36. H. Yue, L. Yao, X. Gao, S. Zhang, E. Guo, H. Zhang, X. Lin, and B. Wang, Effect of Ball-Milling and Graphene Contents on the Mechanical Properties and Fracture Mechanisms of Graphene Nanosheets Reinforced Copper Matrix Composites, J. Alloy. Compd., 2016, 691, p 755–762

    Article  Google Scholar 

  37. S. Das, L. Pelcastre, J. Hardell, and B. Prakash, Effect of Static and Dynamic Ageing on Wear and Friction Behavior of Aluminum 6082 Alloy, Tribol. Int., 2013, 60, p 1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support of this work by the Department of Science and Technology, India via grant number EEQ/2018/001452 and National Institute of Technology, Rourkela, India for the financial and infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Mallik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, A.K., Chandran, R., Das, S. et al. Wear Performance and Nanomechanical Behavior of Sonoelectroplated Cu-Graphene Nanocomposite Thin Films. J. of Materi Eng and Perform 30, 1398–1410 (2021). https://doi.org/10.1007/s11665-020-05355-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05355-y

Keywords

Navigation