Skip to main content
Log in

Influence of Y2O3 and Ta2O5 Co-doping on Microstructure and Thermal Conductivity of Gd2Zr2O7 Ceramics

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Rare earth zirconates (RE2Zr2O7) are considered as a class of potential high-temperature structural materials. In this paper, a series of Y2O3 and Ta2O5 co-doped Gd2Zr2O7 [(Gd1−xYx)2(Zr1−xTax)2O7+x, x = 0, 0.1, 0.2, 0.3, 0.4] ceramics were prepared by solid-state reaction sintering in order to clarify the influence of Y2O3 and Ta2O5 co-doped on microstructure, Young’s modulus and thermal conductivity. The results showed that Y2O3 and Ta2O5 co-doped Gd2Zr2O7 exhibited a single pyrochlore structure, and a small amount of Y3+ ions were doped into the Zr4+ ions lattice. The Young’s moduli of doped Gd2Zr2O7 ceramics slightly change with the increase in Y2O3 and Ta2O5 doping concentration. The minimum thermal conductivities of the specimens were obtained at 800 °C. The thermal conductivity of doped Gd2Zr2O7 with x = 0.3 is lower than that of others among the doped specimens, which is around 1.41 W m−1 K−1 at 800 °C. In addition, (Gd0.7Y0.3)2(Zr0.7Ta0.3)2O7.3 ceramic exhibits excellent phase stability from room temperature to 1550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Minervini, R.W. Grimes, and K.E. Sickafus, Disorder in Pyrochlore Oxides, J. Am. Ceram. Soc., 2010, 83(8), p 1873–1878

    Article  Google Scholar 

  2. Robert Vaßen, M.O. Jarligo, T. Steinke et al., Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938–942

    Article  Google Scholar 

  3. Y. Zhang, M. Xie, F. Zhou et al., Influence of Er Substitution for La on the Thermal Conductivity of (La1−xErx)2Zr2O7 Pyrochlores, Mater. Res. Bull., 2015, 64, p 175–181

    Article  CAS  Google Scholar 

  4. Z.G. Liu, J.H. Ouyang, Y. Zhou et al., Influence of Ytterbium- and Samarium-Oxides Codoping on Structure and Thermal Conductivity of Zirconate Ceramics, J. Eur. Ceram. Soc., 2009, 29(4), p 647–652

    Article  CAS  Google Scholar 

  5. C. Wang, L. Guo, Y. Zhang et al., Enhanced Thermal Expansion and Fracture Toughness of Sc2O3-doped Gd2Zr2O7 Ceramics, Ceram. Int., 2015, 41(9), p 10730–10735

    Article  CAS  Google Scholar 

  6. C.A. Taylor, M.K. Patel, J.A. Aguiar et al., Bubble Formation and Lattice Parameter Changes Resulting from He Irradiation of Defect-Fluorite Gd2Zr2O7, Acta Mater., 2016, 115, p 115–122

    Article  CAS  Google Scholar 

  7. F.N. Sayed, B.P. Mandal, D. Jain et al., Improved Ionic Conductivity in NdGdZr2O7: Influence of Sc3+ Substitution, J. Eur. Ceram. Soc., 2012, 32(12), p 3221–3228

    Article  CAS  Google Scholar 

  8. L. Guo, H. Guo, H. Peng et al., Thermophysical Properties of Yb2O3 Doped Gd2Zr2O7 and Thermal Cycling Durability of (Gd0.9Yb0.1)2Zr2O7/YSZ Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34(5), p 1255–1263

    Article  Google Scholar 

  9. J.M. Drexler, A.L. Ortiz, and N.P. Padture, Composition Effects of Thermal Barrier Coating Ceramics on Their Interaction with Molten Ca–Mg–Al–silicate (CMAS) Glass, Acta Mater., 2012, 60(15), p 5437–5447

    Article  CAS  Google Scholar 

  10. X. Wang, L. Guo, H. Zhang et al., Structural Evolution and Thermal Conductivities of (Gd1−xYbx)2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) Ceramics for Thermal Barrier Coatings, Ceram. Int., 2015, 41(10), p 12621–12625

    Article  CAS  Google Scholar 

  11. C. Wan, Z. Qu, A. Du et al., Influence of B Site Substituent Ti on the Structure and Thermophysical Properties of A2B2O7-Type Pyrochlore Gd2Zr2O7, Acta Mater., 2009, 57(16), p 4782–4789

    Article  CAS  Google Scholar 

  12. Z.G. Liu, J.H. Ouyang, and Y. Zhou, Preparation and Thermophysical Properties of (NdxGd1−x)2Zr2O7 Ceramics, J. Mater. Sci., 2008, 43(10), p 3596–3603

    Article  CAS  Google Scholar 

  13. Z.G. Liu, J.H. Ouyang, and Y. Zhou, Structural Evolution and Thermophysical Properties of (SmxGd1−x)2Zr2O7 (0 ≤ x≤1.0) Ceramics, J. Alloys Compd., 2009, 472(1), p 319–324

    Article  CAS  Google Scholar 

  14. A.N. Radhakrishnan, P. Prabhakar Rao, S.K. Mahesh et al., Role of Bond Strength on the Lattice Thermal Expansion and Oxide Ion Conductivity in Quaternary Pyrochlore Solid Solutions, Inorg. Chem., 2012, 51(4), p 2409–2419

    Article  CAS  Google Scholar 

  15. A.N. Radhakrishnan, P.P. Rao, K.S. Sibi et al., Order–Disorder Phase Transformations in Quaternary Pyrochlore Oxide System: Investigated by X-Ray Diffraction, Transmission Electron Microscopy and Raman Spectroscopic Techniques, J. Solid State Chem., 2009, 182(8), p 2312–2318

    Article  CAS  Google Scholar 

  16. M. Zhao, X. Ren, and W. Pan, Mechanical and Thermal Properties of Simultaneously Substituted Pyrochlore Compounds (Ca2Nb2O7)x(Gd2Zr2O7)1−x, J. Eur. Ceram. Soc., 2015, 35(3), p 1055–1061

    Article  CAS  Google Scholar 

  17. X. Shu, L. Fan, X. Lu et al., Structure and Performance Evolution of the System (Gd1−xNdx)2(Zr1−yCey)2O7 (0 ≤ x, y ≤ 1.0), J. Eur. Ceram. Soc., 2015, 35(11), p 3095–3102

    Article  CAS  Google Scholar 

  18. Y. Wang, F. Yang, and P. Xiao, Glass-Like Thermal Conductivities in (La1−x1Yx1)2 (Zr1−x2Yx2)2O7-x2 (x = x1 + x2, 0 ≤ x≤1.0) Solid Solutions, Acta Mater., 2012, 60(20), p 7024–7033

    Article  CAS  Google Scholar 

  19. J.S. Van Sluytman, S. Krämer, V.K. Tolpygo et al., Microstructure Evolution of ZrO2-YbTaO4 Thermal Barrier Coatings, Acta Mater., 2015, 96, p 133–142

    Article  Google Scholar 

  20. X. Song, M. Xie, S. An et al., Structure and Thermal Properties of ZrO2-Ta2O5-Y2O3-Ln2O3 (Ln = Nd, Sm or Gd) Ceramics for Thermal Barrier Coatings, Scripta Mater., 2010, 62(11), p 879–882

    Article  CAS  Google Scholar 

  21. L. Sun, H. Guo, H. Peng et al., Phase Stability and Thermal Conductivity of Ytterbia and Yttria Co-doped Zirconia, Prog. Nat. Sci. Mater. Int., 2013, 23(4), p 440–445

    Article  Google Scholar 

  22. Z. Qu, C. Wan, and W. Pan, Thermophysical Properties of Rare-Earth Stannates: Effect of Pyrochlore Structure, Acta Mater., 2012, 60(6), p 2939–2949

    Article  CAS  Google Scholar 

  23. Z. Qu, C. Wan, and W. Pan, Thermal Expansion and defect Chemistry of MgO-Doped Sm2Zr2O7, Chem. Mater., 2007, 19(20), p 4913–4918

    Article  CAS  Google Scholar 

  24. M.T. Vandenborre, E. Husson, J.P. Chatry et al., Rare-Earth Titanates and Stannates of Pyrochlore Structure; Vibrational Spectra and Force Fields, J. Raman Spectrosc., 1983, 14(2), p 63–71

    Article  CAS  Google Scholar 

  25. L. Guo, Y. Zhang, and F. Ye, Phase Structure Evolution and Thermo-Physical Properties of Nonstoichiometry Nd2−xZr2+xO7+x/2 Pyrochlore Ceramics, J. Am. Ceram. Soc., 2015, 98(3), p 1013–1018

    Article  CAS  Google Scholar 

  26. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gasturbine Engine Applications, Science, 2002, 296(4), p 280–284

    Article  CAS  Google Scholar 

  27. J. Wu, X. Wei, N.P. Padture et al., Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 2002, 85(12), p 3031–3035

    Article  CAS  Google Scholar 

  28. K.V.G. Kutty, S. Rajagopalan, C.K. Mathews et al., Thermal Expansion Behaviour of Some Rare Earth Oxide Pyrochlores, Mater. Res. Bull., 1994, 29(7), p 759–766

    Article  CAS  Google Scholar 

  29. Y.J. Liang, Y.C. Che, and X.X. Liu, Manual of Practical Inorganic Matter Thermodynamics, Northeastern University Press, Shenyang, 1993

    Google Scholar 

  30. H.R. Lu, C.A. Wang, and C.G. Zhang, Influence of Ln3+ and B3+ Ions Co-Substitution on Thermophysical Properties of LnMB11O19-type Magnetoplumbite LaMgAl11O19 for Advanced Thermal Barrier Coatings, J. Am. Ceram. Soc., 2013, 96(4), p 1063–1066

    Article  CAS  Google Scholar 

  31. D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163, p 67–74

    Article  Google Scholar 

  32. L. Guo, H. Guo, S. Gong et al., Improvement on the Phase Stability, Mechanical Properties and Thermal Insulation of Y2O3-Stabilized ZrO2 by Gd2O3 and Yb2O3 Co-doping, Ceram. Int., 2013, 39(8), p 9009–9015

    Article  CAS  Google Scholar 

  33. M.R. Loghman-Estarki, R.S. Razavi, and H. Jamali, Thermal Behavior Comparison of Plasma Sprayed Nanostructured 7YSZ, 15YSZ and 5.5SYSZ Coatings at Elevated Temperatures, Ceram. Int., 2016, 42(13), p 14374–14383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province (Grant No. 1908085QE219), Anhui Provincial Key Research and Development Program (Grant Nos. 201904a05020010, 1804b06020370 and 201904b11020020), National Science Foundation of China (Grant No. 51671002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolu Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Z., Wu, S., Qian, L. et al. Influence of Y2O3 and Ta2O5 Co-doping on Microstructure and Thermal Conductivity of Gd2Zr2O7 Ceramics. J. of Materi Eng and Perform 29, 1206–1213 (2020). https://doi.org/10.1007/s11665-020-04658-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04658-4

Keywords

Navigation