Skip to main content
Log in

Constitutive Modeling of 17-4PH Stainless Steel Sheet at Elevated Temperature and Statistical Optimization

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The tensile flow behavior of 17-4PH stainless steel sheet was investigated from 650 °C to 850 °C at strain rates of 10−4 to 10−1 s−1. The result indicates that work hardening and dynamic recovery are exhibited in the tensile test in the temperature lower than 750 °C, and a steady stage of stress occurs higher than 750 °C because of dynamic recrystallization. After a step-by-step procedure for data analysis in the hot tensile test, the original constitutive model was given. Considering the strain compensation, several revised constitutive models of Arrhenius-type were constructed with statistical optimization and multi-strain correction. The comparison shows perfect accurate flow predictions through multi-strain modified models. Meanwhile, the flow behavior of random conditions is predicted accurately by a single correction model with Tikhonov regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Fantechi and M. Innocenti, Chloride Stress Corrosion Cracking of Precipitation Hardening S.S. Impellers in Centrifugal Compressor. Laboratory Investigations and Corrective Actions, Eng. Fail. Anal., 2001, 8(5), p 477–492

    CAS  Google Scholar 

  2. M.R.T. Shoushtari, M.H. Moayed, and A. Davoodi, Post-weld Heat Treatment Influence on Galvanic Corrosion of GTAW, Corros. Eng. Sci. Technol., 2011, 46(4), p 415–424

    CAS  Google Scholar 

  3. C. Chung and Y. Tzeng, Effects of Aging Treatment on the Precipitation Behavior of ε-Cu Phase and Mechanical Properties of Metal Injection Molding 17-4PH Stainless Steel, Mater. Lett., 2019, 237, p 228–231

    CAS  Google Scholar 

  4. F. Stachowicz, T. Trzepiecinski, and T. Pieja, Warm Forming of Stainless Steel Sheet, Arch. Civ. Mech. Eng., 2010, 10(4), p 85–94

    Google Scholar 

  5. T. Trzepiecinski, T. Pieja, T. Malinowski et al., Investigation of 17-4PH Steel Microstructure and Conditions of Elevated Temperature Forming of Turbine Engine Strut, J. Mater. Process. Technol., 2018, 252, p 191–200

    CAS  Google Scholar 

  6. T. Trzepiecinski, T. Malinowski, and T. Pieja, Experimental and Numerical Analysis of Industrial Warm Forming of Stainless Steel Sheet, J. Manuf. Process., 2017, 30, p 532–540

    Google Scholar 

  7. M. Aghaie-Khafri, S.H.M. Anijdan, and M. Amirkamali, Microstructural Evolution Under Ausforming and Aging Conditions in 17-4 PH Stainless Steel, Mater. Res. Express, 2019, 6(10), p 10653210. https://doi.org/10.1088/2053-1591/ab37e1

    Article  CAS  Google Scholar 

  8. S.A. Razavi, F. Ashrafizadeh, and S. Fooladi, Prediction of Age Hardening Parameters for 17-4PH Stainless Steel by Artificial Neural Network and Genetic Algorithm, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2016, 675, p 147–152

    CAS  Google Scholar 

  9. H. Mirzadeh and A. Najafizadeh, Aging Kinetics of 17-4 PH Stainless Steel, Mater. Chem. Phys., 2009, 116(1), p 119–124

    CAS  Google Scholar 

  10. J. Wang, H. Zou, C. Li et al., The Effect of Microstructural Evolution on Hardening Behavior of Type 17-4PH Stainless Steel in Long-Term Aging at 350 °C, Mater. Charact., 2006, 57(4–5), p 274–280

    CAS  Google Scholar 

  11. H.J. Mcqueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2002, 322(1), p 43–63

    Google Scholar 

  12. W. Lee and C. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2006, 426(1–2), p 101–113

    Google Scholar 

  13. M. Zhou, Y.C. Lin, J. Deng et al., Hot Tensile Deformation Behaviors and Constitutive Model of an Al–Zn–Mg–Cu Alloy, Mater. Des., 2014, 59, p 141–150

    CAS  Google Scholar 

  14. D. Samantaray, S. Mandal, A.K. Bhaduri et al., Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528(4), p 1937–1943

    Google Scholar 

  15. B. Mcdonald, H. Bornstein, A. Ameri et al., Plasticity and Ductile Fracture Behaviour of Four Armour Steels, Int. J. Solids Struct., 2019, 176–177, p 135–149

    Google Scholar 

  16. D.M. Umbrello, R. Saoubi, and J.C. Outeiro, The Influence of Johnson–Cook Material Constants on Finite Element Simulation of Machining of AISI, 316L Steel, Int. J. Mach. Tools Manuf., 2007, 47(3), p 462–470

    Google Scholar 

  17. N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2012, 535, p 252–257

    CAS  Google Scholar 

  18. N. Kotkunde, H.N. Krishnamurthy, P. Puranik et al., Microstructure Study and Constitutive Modeling of Ti–6Al–4V Alloy at Elevated Temperatures, Mater. Des. (1980–2015), 2014, 54, p 96–103

    CAS  Google Scholar 

  19. D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47(2), p 568–576

    CAS  Google Scholar 

  20. H. Li, Y. Li, X. Wang et al., A Comparative Study on Modified Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict the Hot Deformation Behavior in 28CrMnMoV Steel, Mater. Des., 2013, 49, p 493–501

    Google Scholar 

  21. Y.C. Lin and X. Chen, A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633

    CAS  Google Scholar 

  22. A.S. Khan and R.Q. Liang, Behaviors of Three BCC Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Int. J. Plast., 1999, 15(10), p 1089–1109

    CAS  Google Scholar 

  23. S. Dey, T. Borvik, O.S. Hopperstad et al., On the Influence of Constitutive Relation in Projectile Impact of Steel Plates, Int. J. Impact Eng., 2007, 34(3), p 464–486

    Google Scholar 

  24. A.M. Lennon and K.T. Ramesh, The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures, Int. J. Plast., 2004, 20(2), p 269–290

    CAS  Google Scholar 

  25. A.K. Gupta, V.K. Anirudh, and S.K. Singh, Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Mater. Des., 2013, 43, p 410–418

    CAS  Google Scholar 

  26. W. Wang, J. Zhao, R.X. Zhai, R. Ma, Arrhenius-Type Constitutive Model and Dynamic Recrystallization Behavior of 20Cr2Ni4A Alloy Carburizing Steel, Steel Res. Int., 2017, 88(3), p 1600196. https://doi.org/10.1002/srin.201600196

    Google Scholar 

  27. L. Wang, F. Liu, J.J. Cheng et al., Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy, J. Mater. Eng. Perform., 2016, 25(4), p 1394–1406

    CAS  Google Scholar 

  28. A. Cingara and H.J. Mcqueen, New Formula for Calculating Flow Curves from High Temperature Constitutive Data for 300 Austenitic Steels, J. Mater. Process. Technol., 1992, 36(1), p 31–42

    Google Scholar 

  29. H. Li, L. He, G. Zhao et al., Constitutive Relationships of Hot Stamping Boron Steel B1500HS Based on the Modified Arrhenius and Johnson–Cook Model, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2013, 580, p 330–348

    CAS  Google Scholar 

  30. X. Guo, X. Weng, Y. Jiang et al., Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel, High Temp. Mater. Process., 2017, 36(9), p 913–920

    CAS  Google Scholar 

  31. S.A. Krishnan, C. Phaniraj, C. Ravishankar et al., Prediction of High Temperature Flow Stress in 9Cr-1Mo Ferritic Steel During Hot Compression, Int. J. Press. Vessels Pip., 2011, 88(11–12), p 501–506

    CAS  Google Scholar 

  32. Y.C. Lin, M. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477

    CAS  Google Scholar 

  33. S. Mandal, V. Rakesh, P.V. Sivaprasad et al., Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2009, 500(1–2), p 114–121

    Google Scholar 

  34. H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4PH Stainless Steel under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40(12), p 2950–2958

    Google Scholar 

  35. H. Mirzadeh, A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress, Metall. Mater. Trans. A, 2015, 46(9), p 4027–4037

    CAS  Google Scholar 

  36. C.M. Sellars and W.J. Mctegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    CAS  Google Scholar 

  37. Y. Cao, H. Di, R.D.K. Misra et al., On the Hot Deformation Behavior of AISI, 420 Stainless Steel Based on Constitutive Analysis and CSL Model, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2014, 593, p 111–119

    CAS  Google Scholar 

  38. A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi et al., Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2014, 589, p 76–82

    CAS  Google Scholar 

  39. E. Pu, H. Feng, M. Liu et al., Constitutive Modeling for Flow Behaviors of Superaustenitic Stainless Steel 532654 during Hot Deformation, J. Iron Steel Res. Int., 2016, 23(2), p 178–184

    Google Scholar 

  40. Y.Q. Jiang, Y.C. Lin, X.-Y. Zhang et al., Isothermal Tensile Deformation Behaviors and Fracture Mechanism of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy in β Phase Field, Vacuum, 2018, 156, p 187–197

    CAS  Google Scholar 

  41. Y.C. Lin, H. Yang, Y. Xin et al., Effects of Initial Microstructures on Serrated Flow Features and Fracture Mechanisms of a Nickel-Based Superalloy, Mater. Charact., 2018, 144, p 9–21

    CAS  Google Scholar 

  42. Y. Wang, K. Song, Y. Zhang et al., Microstructure Evolution and Fracture Mechanism of H13 Steel During High Temperature Tensile Deformation, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2019, 746, p 127–133

    CAS  Google Scholar 

  43. F.A. Slooff, J. Zhou, J. Duszczyk et al., Constitutive Analysis of Wrought Magnesium Alloy Mg–Al4–Zn1, Scr. Mater., 2007, 57(8), p 759–762

    CAS  Google Scholar 

  44. P.C. Hansen, Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems, Numer. Algorithms, 1994, 6(1), p 1–35

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from Aeronautical Science Foundation of China (20153021001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, N., Chen, M., Zhang, W. et al. Constitutive Modeling of 17-4PH Stainless Steel Sheet at Elevated Temperature and Statistical Optimization. J. of Materi Eng and Perform 29, 1194–1205 (2020). https://doi.org/10.1007/s11665-020-04648-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04648-6

Keywords

Navigation