Skip to main content

Advertisement

Log in

Development of Uncoupled Anisotropic Ductile Fracture Criteria

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two mainstreams of transformation methods from isotropic fracture criteria to anisotropic ones are to replace the Von Mises yield function with other yield function and linear transformation of strain or stress tensor. Several typical anisotropic criteria such as the transformation methods of Park, Luo, Lou and Yoon, Jia and Bai and a new transformation method are analyzed and discussed from the aspects of required experimental data, material constant amounts, stress state range, average predictive error (Erravg), etc. The fitting results demonstrate that the prediction accuracy of the methods of Luo, Lou and Yoon, Jia and Bai and the new method are better than that of the isotropic criteria from the Erravg aspect based on the experimental results of DP590. In addition, the new transformation method linearly transforms both stress and strain tensor without increasing too many parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99, p 2–15

    Google Scholar 

  2. V. Tvergaard, Influence of Void Nucleation on Ductile Shear Fracture at a Free Surface, J. Mech. Phys. Solids, 1982, 30, p 399–425

    Google Scholar 

  3. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32, p 157–169

    Google Scholar 

  4. K. Nahshon and J. Hutchinson, Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A Solids, 2008, 27, p 1–17

    Google Scholar 

  5. K.L. Nielsen and V. Tvergaard, Ductile Shear Failure or Plug Failure of Spot Welds Modelled by Modified Gurson Model, Eng. Fract. Mech., 2010, 77, p 1031–1047

    Google Scholar 

  6. Z. Xue, J. Faleskog, and J.W. Hutchinson, Tension–Torsion Fracture Experiments–Part II: Simulations with the Extended Gurson Model and a Ductile Fracture Criterion Based on Plastic Strain, Int. J. Solids Struct., 2013, 50, p 4258–4269

    CAS  Google Scholar 

  7. J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Technol., 1985, 107, p 83–89

    Google Scholar 

  8. L.M. Kachanov, Time of the Rupture Process under Creep Conditions, Izy Akad, Nank SSR Otd Tech Nauk, 1958, 8, p 26–31

    Google Scholar 

  9. J.L. Chaboche, M. Boudifa, and K. Saanouni, A CDM Approach of Ductile Damage with Plastic Compressibility, Int. J. Fract., 2006, 137, p 51–75

    CAS  Google Scholar 

  10. L. Malcher and E. Mamiya, An Improved Damage Evolution Law Based on Continuum Damage Mechanics and Its Dependence on Both Stress Triaxiality and the Third Invariant, Int. J. Plast., 2014, 56, p 232–261

    Google Scholar 

  11. M. Cockcroft and D. Latham, Ductility and the Workability of Metals, J. Inst. Metals, 1968, 96, p 33–39

    CAS  Google Scholar 

  12. F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech., 1968, 35, p 363–371

    Google Scholar 

  13. J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17, p 201–217

    Google Scholar 

  14. P. Brozzo, B. Deluca, and R. Rendina, A New Method for the Prediction of Formability in Metal Sheets, Sheet Material Forming and Formability. In: Proceedings of the Seventh Biennial Conference of the IDDRG (1972)

  15. S. Oh, C. Chen, and S. Kobayashi, Ductile Fracture in Axisymmetric Extrusion and Drawing—Part 2: Workability in Extrusion and Drawing, J. Eng. Ind., 1979, 101, p 36–44

    Google Scholar 

  16. M. Oyane, T. Sato, K. Okimoto, and S. Shima, Criteria for Ductile Fracture and Their Applications, J. Mech. Working Technol., 1980, 4, p 65–81

    CAS  Google Scholar 

  17. S.E. Clift, P. Hartley, C. Sturgess, and G. Rowe, Fracture Prediction in Plastic Deformation Processes, Int. J. Mech. Sci., 1990, 32, p 1–17

    Google Scholar 

  18. Y.K. Ko, J.S. Lee, H. Huh, H.K. Kim, and S.H. Park, Prediction of Fracture in Hub-Hole Expanding Process Using a New Ductile Fracture Criterion, J. Mater. Process. Technol., 2007, 187, p 358–362

    Google Scholar 

  19. Y.L. Bai and T. Wierzbicki, Application of Extended Mohr–Coulomb Criterion to Ductile Fracture, Int. J. Fract., 2010, 161, p 1–20

    CAS  Google Scholar 

  20. Y. Lou, H. Huh, S. Lim, and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49, p 3605–3615

    CAS  Google Scholar 

  21. Y.S. Lou, J.W. Yoon, and H. Huh, Modeling of Shear Ductile Fracture Considering a Changeable Cut-off Value for Stress Triaxiality, Int. J. Plast., 2014, 54, p 56–80

    CAS  Google Scholar 

  22. Y.S. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya, and J.W. Yoon, Modeling of Ductile Fracture From Shear to Balanced Biaxial Tension for Sheet Metals, Int. J. Solids Struct., 2017, 112, p 169–184

    CAS  Google Scholar 

  23. Y. Lou and H. Huh, Evaluation of Ductile Fracture Criteria in a General Three-Dimensional Stress State Considering the Stress Triaxiality and the Lode Parameter, Acta Mech. Solida Sin., 2013, 26, p 642–658

    Google Scholar 

  24. Q. Hu, F.F. Zhang, X.F. Li, and J. Chen, Overview on the Prediction Models for Sheet Metal Forming Failure: Necking and Ductile Fracture, Acta Mech. Solida Sin., 2018, 31, p 259–289

    Google Scholar 

  25. O.S. Es-Said, C.J. Parrish, C.A. Bradberry, J.Y. Hassoun, R.A. Parish, A. Nash, N.C. Smythe, K.N. Tran, T. Ruperto, E.W. Lee, D. Mitchell, and C. Vinquist, Effect of Stretch Orientation and Rolling Orientation on the Mechanical Properties of 2195 Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2011, 20, p 1171–1179

    CAS  Google Scholar 

  26. M. Masoumi, M.A. Mohtadi-Bonab, and H.F.G. de Abreu, Effect of Microstructure and Texture on Anisotropy and Mechanical Properties of SAE 970X Steel Under Hot Rolling, J. Mater. Eng. Perform., 2016, 25, p 2847–2854

    CAS  Google Scholar 

  27. M. Grange, J. Besson, and E. Andrieu, An Anisotropic Gurson Type Model to Represent the Ductile Rupture of Hydrided Zircaloy-4 Sheets, Int. J. Fract., 2000, 105, p 273–293

    CAS  Google Scholar 

  28. Z. Chen and X. Dong, The GTN Damage Model based on Hill’48 Anisotropic Yield Criterion and Its Application in Sheet Metal Forming, Comput. Mater. Sci., 2009, 44, p 1013–1021

    CAS  Google Scholar 

  29. A.S. Khan and H.W. Liu, Strain Rate and Temperature Dependent Fracture Criteria for Isotropic and Anisotropic Metals, Int. J. Plast., 2012, 37, p 1–15

    CAS  Google Scholar 

  30. M. Luo, M. Dunand, and D. Mohr, Experiments and Modeling of Anisotropic Aluminum Extrusions Under Multi-axial Loading—Part II: Ductile Fracture, Int. J. Plast., 2012, 32–33, p 36–58

    Google Scholar 

  31. G.Y. Gu and D. Mohr, Anisotropic Hosford–Coulomb fracture Initiation Model: Theory and Application, Eng. Fract. Mech., 2015, 147, p 480–497

    Google Scholar 

  32. N. Park, H. Huh, and J.W. Yoon, Anisotropic Fracture Forming Limit Diagram Considering Non-directionality of the Equi-biaxial Fracture Strain, Int. J. Solids Struct., 2018, 151, p 181–194

    CAS  Google Scholar 

  33. L. Dong, S.H. Li, and J. He, Ductile Fracture Initiation of Anisotropic Metal Sheets, J. Mater. Eng. Perform., 2017, 26, p 3285–3298

    CAS  Google Scholar 

  34. Y.L. Bai and T. Wierzbicki, A Comparative Study of Three Groups of Ductile Fracture Loci in the 3D Space, Eng. Fract. Mech., 2015, 135, p 147–167

    Google Scholar 

  35. L. Xue, Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading, Int. J. Solids Struct., 2007, 44, p 5163–5181

    CAS  Google Scholar 

  36. A.K. Ghosh, A Criterion for Ductile Fracture in Sheets Under Biaxial Loading, Metall. Trans. A, 1976, 7, p 523–533

    Google Scholar 

  37. Y. Lou and H. Huh, Extension of a Shear-Controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter, Int. J. Solids Struct., 2013, 50, p 447–455

    CAS  Google Scholar 

  38. Q. Hu, X.F. Li, X.H. Han, and J. Chen, A New Shear and Tension Based Ductile Fracture Criterion: Modeling and Validation, Eur. J. Mech. A-Solids, 2017, 66, p 370–386

    Google Scholar 

  39. Y. Bao and T. Wierzbicki, On the Cut-off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72, p 1049–1069

    Google Scholar 

  40. A.S. Khan and H.W. Liu, A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy, Int. J. Plast., 2012, 35, p 1–12

    CAS  Google Scholar 

  41. N. Park, H. Huh, S.J. Lim, Y.S. Lou, Y.S. Kang, and M.H. Seo, Fracture-Based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35

    Google Scholar 

  42. N. Park, H. Huh, J. Nam, and C. Jung, Anisotropy Effect On The Fracture Model of DP980 Sheets Considering the Loading Path, Int. J. Automot. Technol., 2015, 16, p 73–81

    Google Scholar 

  43. Y.S. Lou and J.W. Yoon, Alternative Approach to Model Ductile Fracture by Incorporating Anisotropic Yield Function, Int. J. Solids Struct., 2019, 164, p 12–24

    CAS  Google Scholar 

  44. A.M. Beese, M. Luo, Y.N. Li, Y.L. Bai, and T. Wierzbicki, Partially Coupled Anisotropic Fracture Model for Aluminum Sheets, Eng. Fract. Mech., 2010, 77, p 1128–1152

    Google Scholar 

  45. T. Kuwabara, A. Van Bael, and E. Iizuka, Measurement and Analysis of Yield Locus and Work Hardening Characteristics of Steel Sheets with Different r-Values, Acta Mater., 2002, 50, p 3717–3729

    CAS  Google Scholar 

  46. R. Pearce, Some Aspects of Anisotropic Plasticity in Sheet Metals, Int. J. Mech. Sci., 1968, 10, p 995–1004

    Google Scholar 

  47. Y.S. Lou and J.W. Yoon, Anisotropic Yield Function Based on Stress Invariants for BCC and FCC Metals and Its Extension to Ductile Fracture Criterion, Int. J. Plast., 2018, 101, p 125–155

    CAS  Google Scholar 

  48. S.H. Li, J. He, B. Gu, D. Zeng, Z.C. Xia, Y.X. Zhao, and Z.Q. Lin, Anisotropic Fracture of Advanced High Strength Steel Sheets: Experiment and Theory, Int. J. Plast., 2018, 103, p 95–118

    CAS  Google Scholar 

  49. Y.S. Lou and J.W. Yoon, Anisotropic Ductile Fracture Criterion Based on Linear Transformation, Int. J. Plast., 2017, 93, p 3–25

    CAS  Google Scholar 

  50. F. Barlat, K. Chung, and O. Richmond, Strain Rate Potential for Metals and Its Application to Minimum Plastic Work Path Calculations, Int. J. Plast., 1993, 9, p 51–63

    CAS  Google Scholar 

  51. F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, and R.E. Dick, Linear Transformation-Based Anisotropic Yield Functions, Int. J. Plast., 2005, 21, p 1009–1039

    CAS  Google Scholar 

  52. Y.Q. Jia and Y.L. Bai, Ductile Fracture Prediction for Metal Sheets Using All-Strain-Based Anisotropic eMMC Model, Int. J. Mech. Sci., 2016, 115, p 516–531

    Google Scholar 

  53. Y.Q. Jia and Y.L. Bai, Experimental Study on the Mechanical Properties of AZ31B-H24 Magnesium Alloy Sheets Under Various Loading Conditions, Int. J. Fract., 2016, 197, p 25–48

    CAS  Google Scholar 

  54. W. Hosford, A Generalized Isotropic Yield Criterion, J. Appl. Mech., 1972, 39, p 607–609

    Google Scholar 

  55. A. Hershey, The Plasticity of an Isotropic Aggregate of Anisotropic Face-Centered Cubic Crystals, J. Appl. Mech. Trans. ASME, 1954, 21, p 241–249

    CAS  Google Scholar 

  56. F. Barlat, D.J. Lege, and J.C. Brem, A Six-Component Yield Function for Anisotropic Materials, Int. J. Plast., 1991, 7, p 693–712

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from The Ministry of Science and Technology of China through the National Key Research and Development Project with Grant # 2017YFB0304403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Rodrigues’ Rotation Formula

The strain tensor can be expressed by three principal strains according to the coordinate system along rolling direction, transverse direction and normal direction (RD, TD and ND) as shown in Eq 41.

$$\left[ {\begin{array}{*{20}l} {\varepsilon_{x} } \\ {\varepsilon_{y} } \\ {\varepsilon_{z} } \\ {\varepsilon_{xy} } \\ {\varepsilon_{xz} } \\ {\varepsilon_{yz} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {\left( {tx^{2} + c} \right)^{2} } \hfill & {\left( {sz + txy} \right)^{2} } \hfill & {\left( {sy - txz} \right)^{2} } \hfill \\ {\left( {sz - txy} \right)^{2} } \hfill & {\left( {ty^{2} + c} \right)^{2} } \hfill & {\left( {sx + tyz} \right)^{2} } \hfill \\ {\left( {sy + txz} \right)^{2} } \hfill & {\left( {sx - tyz} \right)^{2} } \hfill & {\left( {tz^{2} + c} \right)^{2} } \hfill \\ {\left( {tx^{2} + c} \right)\left( { - sz + txy} \right)} \hfill & {\left( {ty^{2} + c} \right)\left( {sz + txy} \right)} \hfill & { - \,\left( {sy - txz} \right)\left( {sx + tyz} \right)} \hfill \\ {\left( {tx^{2} + c} \right)\left( {sy + txz} \right)} \hfill & { - \,\left( {sx - tyz} \right)\left( {sz + txy} \right)} \hfill & {\left( {tz^{2} + c} \right)\left( { - sy + txz} \right)} \hfill \\ { - \,\left( {sz - txy} \right)\left( {sy + txz} \right)} \hfill & {\left( {ty^{2} + c} \right)\left( { - sx + tyz} \right)} \hfill & {\left( {tz^{2} + c} \right)\left( {sx + tyz} \right)} \hfill \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} {\varepsilon_{1} } \\ {\varepsilon_{2} } \\ {\varepsilon_{3} } \\ \end{array} } \right]$$
(41)

where \(t = 1 - \cos \theta\), \(c = \cos \theta\), \(s = \sin \theta\), \(\hat{u} = x\hat{i} + y\hat{j} + z\hat{k}\). \(\hat{u}\) and θ denote a unit vector for a rotation axis and the rotation angle, respectively. For the application of the fracture surface to sheet metal forming, the unit vector of a rotation axis can be defined as \(\hat{u} = x\hat{i} + y\hat{j} + z\hat{k} = \hat{k}\). Therefore, Eq 41 can be simplified to Eq 42.

$$\left[ {\begin{array}{*{20}l} {\varepsilon_{x} } \\ {\varepsilon_{y} } \\ {\varepsilon_{z} } \\ {\varepsilon_{xy} } \\ {\varepsilon_{xz} } \\ {\varepsilon_{yz} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {c^{2} } \hfill & {s^{2} } \hfill & 0 \hfill \\ {s^{2} } \hfill & {c^{2} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\left( {t + c} \right)^{2} } \hfill \\ { - \,cs} \hfill & {cs} \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\varepsilon_{1} } \\ {\varepsilon_{2} } \\ {\varepsilon_{3} } \\ \end{array} } \right]$$
(42)

Appendix 2: A Definition of the Strain Rate Potential for Plastically Deforming Metals

Due to the incompressibility during the plastic deformation, Barlat et al. (Ref 50) redefined the strain rate potential ψ based on the work-equivalent effective strain obtained by the TBH model.

$$\varPsi = \left| {\varepsilon_{1}^{d} } \right|^{b} + \left| {\varepsilon_{2}^{d} } \right|^{b} + \left| {\varepsilon_{3}^{d} } \right|^{b} = 2\left( {d\bar{\varepsilon }_{d} } \right)^{b}$$
(43)

Accordingly, the equivalent plastic strain can be expressed as follows:

$$\left( {d\bar{\varepsilon }_{d} } \right)^{b} = \frac{1}{2}\left( {\left| {d\varepsilon_{1}^{d} } \right|^{b} + \left| {d\varepsilon_{2}^{d} } \right|^{b} + \left| {d\varepsilon_{3}^{d} } \right|^{b} } \right)$$
(44)

Based on the procedure of transforming the isotropic yield function (Ref 54, 55) into the anisotropic yield function (Ref 56), the anisotropic equivalent plastic strain rate with six plastic strain rate components in the axes of orthotropic symmetry x, y and z is shown as follows.

$$\dot{\varepsilon }_{d} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\frac{{\beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right) - \beta_{2} \left( {\dot{\varepsilon }_{z} - \dot{\varepsilon }_{x} } \right)}}{3}} \\ {\beta_{6} \dot{\varepsilon }_{xy} } \\ {\beta_{5} \dot{\varepsilon }_{zx} } \\ \end{array} } & {\begin{array}{*{20}c} {\beta_{6} \dot{\varepsilon }_{xy} } \\ {\frac{{\beta_{1} \left( {\dot{\varepsilon }_{y} - \dot{\varepsilon }_{z} } \right) - \beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right)}}{3}} \\ {\beta_{4} \dot{\varepsilon }_{yz} } \\ \end{array} } & {\begin{array}{*{20}c} {\beta_{5} \dot{\varepsilon }_{zx} } \\ {\beta_{4} \dot{\varepsilon }_{yz} } \\ {\frac{{\beta_{2} \left( {\dot{\varepsilon }_{z} - \dot{\varepsilon }_{x} } \right) - \beta_{1} \left( {\dot{\varepsilon }_{y} - \dot{\varepsilon }_{z} } \right)}}{3}} \\ \end{array} } \\ \end{array} } \right]$$
(45)

The six material constants of βi (i = 1,2,3,4,5,6) indicate the anisotropy of alloys. The eigenvalues of \(\dot{\varvec{\varepsilon }}_{\varvec{d}}\) including \(\varepsilon_{1}^{d}\), \(\varepsilon_{2}^{d}\) and \(\varepsilon_{3}^{d}\) can be obtained by solving the eigenfunction.

$$\dot{\varepsilon }_{d}^{3} - 3I_{2} \dot{\varepsilon }_{d} - 2I_{3} = 0$$
(46)

where

$$\begin{aligned} I_{2} & = \frac{{\left[ {\beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right) - \beta_{2} \left( {\dot{\varepsilon }_{z} - \dot{\varepsilon }_{x} } \right)} \right]^{2} }}{54} + \frac{{\left[ {\beta_{1} \left( {\dot{\varepsilon }_{y} - \dot{\varepsilon }_{z} } \right) - \beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right)} \right]^{2} }}{54} \\ & \quad + \;\frac{{\left[ {\beta_{2} \left( {\dot{\varepsilon }_{z} - \dot{\varepsilon }_{x} } \right) - \beta_{1} \left( {\dot{\varepsilon }_{y} - \dot{\varepsilon }_{z} } \right)} \right]^{2} }}{54} + \frac{{\left( {\beta_{4} \dot{\varepsilon }_{yz} } \right)^{2} + \left( {\beta_{5} \dot{\varepsilon }_{zx} } \right)^{2} + \left( {\beta_{6} \dot{\varepsilon }_{xy} } \right)^{2} }}{3} \\ I_{3} & = \frac{{\left[ {\beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right) - \beta_{2} \left( {\dot{\varepsilon }_{z} - \dot{\varepsilon }_{x} } \right)} \right]\left[ {\beta_{1} \left( {\dot{\varepsilon }_{y} - \dot{\varepsilon }_{z} } \right) - \beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right)} \right]}}{54} - \frac{{\left[ {\beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right) - \beta_{2} \left( {\dot{\varepsilon }_{z} - \dot{\varepsilon }_{x} } \right)} \right]\left( {\beta_{4} \dot{\varepsilon }_{yz} } \right)^{2} }}{6} \\ & \quad - \;\frac{{\left[ {\beta_{1} \left( {\dot{\varepsilon }_{y} - \dot{\varepsilon }_{z} } \right) - \beta_{3} \left( {\dot{\varepsilon }_{x} - \dot{\varepsilon }_{y} } \right)} \right]\left( {\beta_{5} \dot{\varepsilon }_{zx} } \right)^{2} }}{6} - \frac{{\left[ {\beta_{2} \left( {\dot{\varepsilon }_{z} - \dot{\varepsilon }_{x} } \right) - \beta_{1} \left( {\dot{\varepsilon }_{y} - \dot{\varepsilon }_{z} } \right)} \right]\left( {\beta_{6} \dot{\varepsilon }_{xy} } \right)^{2} }}{6} \\ & \quad + \;\beta_{4} \beta_{5} \beta_{6} \dot{\varepsilon }_{yz} \dot{\varepsilon }_{zx} \dot{\varepsilon }_{xy} \\ \end{aligned}$$
(47)
$$\theta = \cos^{ - 1} \left( {\frac{{I_{3} }}{{I_{2}^{3/2} }}} \right),\quad 0 \le \theta \le \pi$$
(48)

The expressions of eigenvalues of \(\dot{\varvec{\varepsilon }}_{\varvec{d}}\) are shown as follows:

$$\begin{aligned} \dot{\varepsilon }_{1}^{d} & = 2\sqrt {I_{2} } \cos \left( {\frac{\theta }{3}} \right) \\ \dot{\varepsilon }_{2}^{d} & = 2\sqrt {I_{2} } \cos \left( {\frac{\theta - 2\pi }{3}} \right) \\ \dot{\varepsilon }_{3}^{d} & = 2\sqrt {I_{2} } \cos \left( {\frac{\theta + 2\pi }{3}} \right) \\ \end{aligned}$$
(49)

\(\dot{\varvec{\varepsilon }}_{\varvec{d}}\) is reduced to \(\dot{\varvec{\varepsilon }}_{\varvec{p}}\) if all the material constants are equal to 1. Therefore, above method induces a new method for explicitly expressing the principal strain by strain components. Moreover, the expression of \(\dot{\varvec{\varepsilon }}_{\varvec{d}}\) meets the constant-volume principle in the metal forming processes regardless of the anisotropic constant values. The transformation method of Lou and Yoon involves the anisotropy. However, it is not based on the constant-volume principle in the process of introducing anisotropic parameters.

Appendix 3: Explicit Function of the Principal Strain Through Strain Components

The process of calculating the principal strain according to strain components is similar to that of getting eigenvalues of the third-order square matrix. Next, the general process of obtaining them is introduced.

$$\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {m_{11} } \\ {m_{21} } \\ {m_{31} } \\ \end{array} } & {\begin{array}{*{20}c} {m_{12} } \\ {m_{22} } \\ {m_{32} } \\ \end{array} } & {\begin{array}{*{20}c} {m_{13} } \\ {m_{23} } \\ {m_{33} } \\ \end{array} } \\ \end{array} } \right]$$
(50)

The corresponding eigenfunction is shown in Eq 51.

$$A_{1} x^{3} + A_{2} x^{2} + A_{3} x + A_{4} = 0 \left( {A_{1} \ne 0} \right)$$
(51)

where the coefficients are listed as follows:

$$\left\{ {\begin{array}{*{20}l} {A_{1} = 1} \hfill \\ {A_{2} = - \;\left( {m_{11} + m_{22} + m_{33} } \right)} \hfill \\ {A_{3} = m_{11} m_{22} + m_{22} m_{33} + m_{33} m_{11} - m_{12} m_{21} - m_{23} m_{32} - m_{31} m_{13} } \hfill \\ {A_{4} = m_{11} m_{23} m_{32} + m_{22} m_{13} m_{31} + m_{33} m_{12} m_{21} - m_{11} m_{22} m_{33} - m_{12} m_{23} m_{31} - m_{13} m_{21} m_{32} } \hfill \\ \end{array} } \right.$$
(52)

Let

$$y = x + \frac{{A_{2} }}{{3A_{1} }}$$
(53)

Equation 51 is simplified to Eq 54 as follows:

$$y^{3} + py + q = 0$$
(54)

where the coefficients are listed as follows:

$$\left\{ {\begin{array}{*{20}l} {p = \frac{{A_{3} }}{{A_{1} }} - \frac{1}{3}\left( {\frac{{A_{2} }}{{A_{1} }}} \right)^{2} } \hfill \\ {q = \frac{2}{27}\left( {\frac{{A_{2} }}{{A_{1} }}} \right)^{3} - \frac{1}{3}\frac{{A_{2} }}{{A_{1} }}\frac{{A_{3} }}{{A_{1} }} + \frac{{A_{4} }}{{A_{1} }}} \hfill \\ \end{array} } \right.$$
(55)

The calculating results are shown as follows:

$$\left\{ {\begin{array}{*{20}c} {y_{1} = \sqrt[3]{{ - \frac{q}{2} + \sqrt {\left( {\frac{q}{2}} \right)^{2} + \left( {\frac{p}{3}} \right)^{3} } }} + \sqrt[3]{{ - \frac{q}{2} - \sqrt {\left( {\frac{q}{2}} \right)^{2} + \left( {\frac{p}{3}} \right)^{3} } }}} \\ {y_{2} = \omega_{1} \sqrt[3]{{ - \frac{q}{2} + \sqrt {\left( {\frac{q}{2}} \right)^{2} + \left( {\frac{p}{3}} \right)^{3} } }} + \omega_{2} \sqrt[3]{{ - \frac{q}{2} - \sqrt {\left( {\frac{q}{2}} \right)^{2} + \left( {\frac{p}{3}} \right)^{3} } }}} \\ {y_{3} = \omega_{2} \sqrt[3]{{ - \frac{q}{2} + \sqrt {\left( {\frac{q}{2}} \right)^{2} + \left( {\frac{p}{3}} \right)^{3} } }} + \omega_{1} \sqrt[3]{{ - \frac{q}{2} - \sqrt {\left( {\frac{q}{2}} \right)^{2} + \left( {\frac{p}{3}} \right)^{3} } }}} \\ \end{array} } \right.$$
(56)

where ω1 and ω2 are expressed in Eq 57.

$$\left\{ {\begin{array}{*{20}c} {\omega_{1} = \frac{ - 1 + \sqrt 3 i}{2}} \\ {\omega_{2} = \frac{ - 1 - \sqrt 3 i}{2}} \\ \end{array} } \right.$$
(57)

Eigenvalues of the third-order square matrix are revealed as below:

$$\left\{ {\begin{array}{*{20}c} {x_{1} = y_{1} - \frac{{A_{2} }}{{3A_{1} }}} \\ {x_{2} = y_{2} - \frac{{A_{2} }}{{3A_{1} }}} \\ {x_{3} = y_{3} - \frac{{A_{2} }}{{3A_{1} }}} \\ \end{array} } \right.$$
(58)

According to the above method of the strain, the principal strain is shown as follows.

$$\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\varepsilon_{x} } \\ {\varepsilon_{yx} } \\ {\varepsilon_{zx} } \\ \end{array} } & {\begin{array}{*{20}c} {\varepsilon_{xy} } \\ {\varepsilon_{y} } \\ {\varepsilon_{zy} } \\ \end{array} } & {\begin{array}{*{20}c} {\varepsilon_{xz} } \\ {\varepsilon_{yz} } \\ {\varepsilon_{z} } \\ \end{array} } \\ \end{array} } \right]$$
(59)

The corresponding eigenfunction is shown in Eq 60:

$$A_{1} \varepsilon^{3} + A_{2} \varepsilon^{2} + A_{3} \varepsilon + A_{4} = 0 \left( {A_{1} \ne 0} \right)$$
(60)

where the coefficients are listed as follows:

$$\left\{ {\begin{array}{*{20}l} {A_{1} = 1} \hfill \\ {A_{2} = - \left( {\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} } \right)} \hfill \\ {A_{3} = \varepsilon_{x} \varepsilon_{y} + \varepsilon_{y} \varepsilon_{z} + \varepsilon_{z} \varepsilon_{x} - \left( {\varepsilon_{xy} } \right)^{2} - \left( {\varepsilon_{yz} } \right)^{2} - \left( {\varepsilon_{zx} } \right)^{2} } \hfill \\ {A_{4} = \varepsilon_{x} \left( {\varepsilon_{yz} } \right)^{2} + \varepsilon_{y} \left( {\varepsilon_{zx} } \right)^{2} + \varepsilon_{z} \left( {\varepsilon_{xy} } \right)^{2} - \varepsilon_{x} \varepsilon_{y} \varepsilon_{z} - 2\varepsilon_{xy} \varepsilon_{yz} \varepsilon_{zx} } \hfill \\ \end{array} } \right.$$
(61)

Because εp is a symmetric matrix and εyz = εzx = 0 under plane stress conditions, Eq 61 can be simplified to Eq 62.

$$\left\{ {\begin{array}{*{20}l} {A_{1} = 1} \hfill \\ {A_{2} = - \left( {\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} } \right) = 0} \hfill \\ {A_{3} = \varepsilon_{x} \varepsilon_{y} + \varepsilon_{y} \varepsilon_{z} + \varepsilon_{z} \varepsilon_{x} - \left( {\varepsilon_{xy} } \right)^{2} } \hfill \\ {A_{4} = \varepsilon_{z} \left( {\varepsilon_{xy} } \right)^{2} - \varepsilon_{x} \varepsilon_{y} \varepsilon_{z} } \hfill \\ \end{array} } \right.$$
(62)
$$\varepsilon^{3} + A_{3} \varepsilon + A_{4} = 0$$
(63)

Let

$$\left\{ {\begin{array}{*{20}c} {M = \frac{{\varepsilon_{x} \varepsilon_{y} \varepsilon_{z} - \varepsilon_{z} \left( {\varepsilon_{xy} } \right)^{2} }}{2}} \\ {N = \sqrt {\left( {\frac{{\varepsilon_{z} \left( {\varepsilon_{xy} } \right)^{2} - \varepsilon_{x} \varepsilon_{y} \varepsilon_{z} }}{2}} \right)^{2} + \left( {\frac{{\varepsilon_{x} \varepsilon_{y} + \varepsilon_{y} \varepsilon_{z} + \varepsilon_{z} \varepsilon_{x} - \left( {\varepsilon_{xy} } \right)^{2} }}{3}} \right)^{3} } } \\ \end{array} } \right.$$
(64)

The three principal strains are expressed as follows:

$$\left\{ {\begin{array}{*{20}c} {\varepsilon_{1} = \sqrt[3]{M + N} + \sqrt[3]{M - N}} \\ {\varepsilon_{2} = \omega_{1} \sqrt[3]{M + N} + \omega_{2} \sqrt[3]{M - N}} \\ {\varepsilon_{3} = \omega_{2} \sqrt[3]{M + N} + \omega_{1} \sqrt[3]{M - N}} \\ \end{array} } \right.$$
(65)

The above method is used to the transformation method of Lou and Yoon. According to Eq 25, the equations of M and N are shown as follows.

$$\begin{aligned} M & = \frac{1}{54}\left[ {\left( {d_{13} d_{21} d_{31} - d_{13} d_{23} d_{31} } \right)\left( {\varepsilon_{x} } \right)^{3} + \left( {d_{12} d_{23} d_{32} - d_{13} d_{23} d_{32} } \right)\left( {\varepsilon_{y} } \right)^{3} } \right. \\ & \quad +\, \left( {d_{13} d_{21} d_{32} - d_{13} d_{23} d_{32} - 2d_{13} d_{23} d_{31} + d_{13} d_{21} d_{31} + d_{12} d_{23} d_{31} - d_{12} d_{21} d_{31} } \right)\left( {\varepsilon_{x} } \right)^{2} \varepsilon_{y} \\ & \quad +\, \left( {d_{12} d_{23} d_{31} - d_{13} d_{23} d_{31} - 2d_{13} d_{23} d_{32} + d_{13} d_{21} d_{32} + d_{12} d_{23} d_{32} - d_{12} d_{21} d_{32} } \right)\varepsilon_{x} \left( {\varepsilon_{y} } \right)^{2} \\ & \quad \left. { +\, d_{31} \left( {d_{44} } \right)^{2} \varepsilon_{x} \left( {\varepsilon_{xy} } \right)^{2} + d_{32} \left( {d_{44} } \right)^{2} \varepsilon_{y} \left( {\varepsilon_{xy} } \right)^{2} } \right] \\ N & = \sqrt {\begin{aligned} \left\{ {\frac{1}{54}\left[ {\begin{array}{*{20}l} {\left( {d_{13} d_{21} d_{31} - d_{13} d_{23} d_{31} } \right)\left( {\varepsilon_{x} } \right)^{3} + \left( {d_{12} d_{23} d_{32} - d_{13} d_{23} d_{32} } \right)\left( {\varepsilon_{y} } \right)^{3} } \hfill \\ { + \left( {d_{13} d_{21} d_{32} - d_{13} d_{23} d_{32} - 2d_{13} d_{23} d_{31} + d_{13} d_{21} d_{31} + d_{12} d_{23} d_{31} - d_{12} d_{21} d_{31} } \right)\left( {\varepsilon_{x} } \right)^{2} \varepsilon_{y} } \hfill \\ { + d_{12} d_{23} d_{31} - d_{13} d_{23} d_{31} - 2d_{13} d_{23} d_{32} + d_{13} d_{21} d_{32} + d_{12} d_{23} d_{32} - d_{12} d_{21} d_{32} \varepsilon_{x} \left( {\varepsilon_{y} } \right)^{2} } \hfill \\ { + d_{31} \left( {d_{44} } \right)^{2} \varepsilon_{x} \left( {\varepsilon_{xy} } \right)^{2} + d_{32} \left( {d_{44} } \right)^{2} \varepsilon_{y} \left( {\varepsilon_{xy} } \right)^{2} } \hfill \\ \end{array} } \right]} \right\} \hfill \\ + \left\{ {\frac{1}{27}\left[ {\begin{array}{*{20}l} {\left( {d_{13} d_{23} - d_{13} d_{21} - d_{21} d_{31} - d_{23} d_{31} - d_{13} d_{31} } \right)\left( {\varepsilon_{x} } \right)^{2} } \hfill \\ { + \left( {d_{13} d_{23} - d_{12} d_{23} - d_{12} d_{32} + d_{23} d_{32} + d_{13} d_{32} } \right)\left( {\varepsilon_{y} } \right)^{2} } \hfill \\ { + \left( \begin{aligned} d_{21} d_{32} - d_{23} d_{32} - d_{23} d_{31} + 2d_{13} d_{23} + d_{13} d_{21} - d_{12} d_{23} + d_{12} d_{21} \hfill \\ d_{13} d_{32} - d_{13} d_{31} - d_{12} d_{31} \hfill \\ \end{aligned} \right)\varepsilon_{x} \varepsilon_{y} } \hfill \\ { - (d_{44} )^{2} \left( {\varepsilon_{xy} } \right)^{2} } \hfill \\ \end{array} } \right]} \right\}^{3} \hfill \\ \end{aligned}^{2}} \\ \end{aligned} .$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, K., Zhu, F., Li, X. et al. Development of Uncoupled Anisotropic Ductile Fracture Criteria. J. of Materi Eng and Perform 29, 1282–1295 (2020). https://doi.org/10.1007/s11665-020-04592-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04592-5

Keywords

Navigation