Skip to main content

Advertisement

Log in

Structure and Mechanical Properties of AISI1045 in the Helical Rolling–Pressing Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The structure and mechanical properties of steel AISI 1045 subjected to three passes of the combined process “helical rolling–pressing” at a temperature of 500 °C were investigated. During the helical rolling–pressing process, the structure was substantially crushed to ultrafine-grained state, as the structure of steel AISI 1045 with an average grain size of 25 µm after deformation was decreased by 25 times, the average grain size was 1 µm. The values of tensile strength and yield strength increase in three passes from 619 to 925 MPa and from 545 to 867 MPa, respectively. The relative contraction after rupture varies from 42 to 35%; but the change is not as significant as in usual helical rolling. The combined helical rolling–pressing process is an effective way to form an ultrafine-grained structure and improve the mechanical properties of AISI 1045 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45, p 103–189

    Article  CAS  Google Scholar 

  2. G.I. Raab, A.G. Raab, R.N. Asfandiyarov, E.I. Fakhretdinova, Combined and Consecutive SPD Processing Techniques, Machines. Technologies. Materials. Proceedings, Volume III « MATERIALS » , pp. 187–188 (2017)

  3. X. Zhao, N. Chen, and N. Zhao, Numerical Simulation of Equal Channel Angular Pressing for Multi-Pass in Different Routes, Appl. Mech. Mater., 2012, 268–270, p 373–377

    Article  Google Scholar 

  4. I.E. Volokitina and G.G. Kurapov, Effect of Initial Structural State on Formation of Structure and Mechanical Properties of Steels Under ECAP, Met. Sci. Heat Treat., 2018, 59, p 786–792

    Article  CAS  Google Scholar 

  5. S. Wang, W. Liang, Yu Wang, L. Bian, and K. Chen, A Modified Die for Equal Channel Angular Pressing, J. Mater. Process. Technol., 2009, 209, p 3182–3186

    Article  CAS  Google Scholar 

  6. A.B. Nayzabekov and I.E. Volokitina, Effect of the Initial Structural State of Cr–Mo High-Temperature Steel on Mechanical Properties after Equal-Channel Angular Pressing, Phys. Met. Metall., 2019, 120(2), p 177–183

    Article  CAS  Google Scholar 

  7. G. Raab, R. Valiev, T. Lowe, and Y. Zhu, Continuous Processing of Ultrafine Grained A1 by ECAP-Conform, Mater. Sci. Eng., 2004, 382, p 30–34

    Article  Google Scholar 

  8. G.I. Raab, E.I. Fakhretdinova, R.Z. Valiev, L.P. Trifonenkov, and V.F. Frolov, Computer Study of the Effect of Tooling Geometry on Deformation Parameters in the Plastic Shaping of Aluminum Wire Rod by Multi-ECAP-Conform, Metallurgist, 2016, 59(11–12), p 1007–1014

    Article  Google Scholar 

  9. M. Vaseghi, H.S. Kim, A.K. Taheri, and A. Momeni, Inhomogeneity Through Warm Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2013, 22(6), p 1666–1671

    Article  CAS  Google Scholar 

  10. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, The Development and Testing of a New Method of Qualitative Analysis of the Microstructure Quality, for Ex-ample of Steel AISI, 321 Subjected to Radial Shear Rolling, Physica Scripta, 2019, 1, p 94. https://doi.org/10.1088/1402-4896/ab1e6e

    Article  Google Scholar 

  11. A. Korbel and W. Bochniak, Refinement and Control of the Metal Structure Elements by Plastic Deformation, Scripta Mater., 2004, 51, p 755

    Article  CAS  Google Scholar 

  12. Y.G. Jin, I.H. Son, S.H. Kang, and Y.T. Im, Three-Dimensional Finite Element Analysis of Multi-Pass Equal-Channel Angular Extrusion of Aluminum AA1050 with Split Dies, Mater. Sci. Eng., 2009, 503, p 152

    Article  Google Scholar 

  13. A. Naizabekov, I. Volokitina, A. Volokitin, and E. Panin, Structure and Mechanical Properties of Steel in the Process “Pressing–Drawing”, J. Mater. Eng. Perform., 2019, 28(3), p 1762–1771

    Article  CAS  Google Scholar 

  14. S.K. Hwanga, H.M. Baeka, I.H. Sonb, Y.T. Ima, and C.M. Baeb, Mater. Sci. Eng. A, 2013, 579, p 118

    Article  Google Scholar 

  15. J.W. Leea, H.M. Baeka, S.K. Hwanga, I.H. Sonb, C.I. Baeb, and Y.T. Ima, Mater. Des., 2014, 55, p 898

    Article  Google Scholar 

  16. L.S. Derevyagina, A.I. Gordienko, YuI, Pochivalov, and A.S. Smirnova, Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance, Phys. Metals Metallogr., 2018, 119, p 83–91

    Article  CAS  Google Scholar 

  17. K.V. Ivanov, E.V. Naydenkin, O.N. Lykova, I.V. Ratochka, I.P. Mishin, and V.A. Vinokurov, Structure Evolution and Mechanical Properties of a Ti-6Al-4 V Alloy During Helical Rolling and Subsequent Deformation and Heat Treatments, Russ. Phys. J., 2017, 60, p 1226–1232

    Article  CAS  Google Scholar 

  18. Patent of the Republic Of Kazakhstan № 25863. Device for Continuous Metal Pressing/A.B. Naizabekov, S.N. Lezhnev, E.A. Panin;. – 2013. Bull. No. 7

  19. S. Lezhnev, A.B. Naizabekov, E. Panin, I. Volokitina, and T. Koinov, The Effect of Preliminary and Final Heat Treatment in Course of the Combined “Rolling-Pressing” Process Realization on Microstructure Evolution of Copper, J. Chem. Technol. Metall., 2016, 51, p 315–321

    CAS  Google Scholar 

  20. A. Naizabekov, S. Lezhnev, E. Panin, I. Volokitina, A. Arbuz, T. Koinov, and I. Mazur, Effect of Combined Rolling–ECAP on Ultrafine-Grained Structure and Properties in 6063 Al Alloy, J. Mater. Eng. Perform., 2019, 28(1), p 200–210

    Article  CAS  Google Scholar 

  21. Patent of Russian Federation № 2347631. Method of Producing Blanks with Fine-Grained Structure by Combined Helical and Longitudinal Rolling/R.Z. Valiev, H.S. Salimgareev, R.R. Valiev; 2009

  22. A. Naizabekov, V. Talmazan, A. Arbuz, T. Koinov, and S. Lezhnev, Study of Axial Forces with the Purpose to Realize A Combined Process « Helical Rolling-Pressing», J. Chem. Technol. Metall., 2015, 50, p 217–222

    Google Scholar 

  23. A. Naizabekov, S. Lezhnev, A. Arbuz, and E. Panin, Combined Process “Helical Rolling-Pressing” and its Effect on the Microstructure of Ferrous and Non-Ferrous Materials, Metall. Res. Technol., 2018, 115, p 213

    Article  CAS  Google Scholar 

  24. Patent of Russian Federation № 2293619. Method of Helical Rolling/Galkin S.P.; 2007. Bull. № 5

  25. S. Lezhnev, A. Naizabekov, and I. Volokitina, Features of Change of the Structure and Mechanical Properties of Steel at Ecap Depending on the Initial State, J. Chem. Technol. Metall., 2017, 52(4), p 626–635

    CAS  Google Scholar 

  26. H. Yada, N. Matsuzu, K. Nakajima, K. Watanabe, and H. Tokita, Strength and Structural-Changes Under High Strain-Rate Hot Deformation of C-Steels, Trans. ISIJ, 1983, 23, p 100–109

    Article  Google Scholar 

  27. Пaт. № 2293619 Poccийcкaя Фeдepaция, MПК B21B 19/00. Cпocoб винтoвoй пpoкaтки/Гaлкин C. П.; зaявитeль и пaтeнтooблaдaтeль HИTУ MИCиcyнoк – № 2006110612/02, зaявл. 04.04.2006; oпyбл. 20.02.2007. Бюл. изoбp., 2007, № 5

  28. E.A. Panin, A.B. Naizabekov, S.N. Lezhnev, Simulation of the Joint ‘Rolling-Pressing’ Process Using Equal-Channel Step Die. in 17-th International Conference on Metallurgy and Materials METAL-2008, Ostrava, Czech Republic, 2008.

  29. L.S. Derevyagina, A.I. Gordienko, YuI, Pochivalov, and A.S. Smirnova, Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance, Phys. Met. Metall., 2018, 119(1), p 83–91

    Article  CAS  Google Scholar 

  30. A.A. Bogatov and E.I. Panov, Effect of Stress-Strain State During Helical Rolling on Metal and Alloy Structure and Ductility, Metallurgist, 2013, 57(5–6), p 434–441

    Article  CAS  Google Scholar 

  31. M. Samaee, S. Najafi, A.R. Eivani, and H.R.J. Jafarian, Zhou Simultaneous Improvements of the Strength and Ductility of Fine-Grained AA6063 Alloy with Increasing Number of ECAP Passes, Mater. Sci. Eng. A, 2016, 669, p 350–357

    Article  CAS  Google Scholar 

  32. M. Kawasaki, Z. Horita, and T.G. Langdon, Microstructural Evolution in High Purity Aluminum Processed by ECAP, Mater. Sci. Eng. A, 2009, 524(1–2), p 143–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Volokitin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naizabekov, A., Volokitina, I., Lezhnev, S. et al. Structure and Mechanical Properties of AISI1045 in the Helical Rolling–Pressing Process. J. of Materi Eng and Perform 29, 315–329 (2020). https://doi.org/10.1007/s11665-019-04536-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04536-8

Keywords

Navigation