Skip to main content

Advertisement

Log in

High-Carbon Ferrochrome Effects on Microstructure and Mechanical Properties of Powder Metallurgy Titanium Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the powder metallurgy method was employed to prepare titanium alloys with high-carbon ferrochrome (HCFeCr). With the HCFeCr addition, the size of the β grains decreased and the lamellae of the α phase became thinner. The TiC strengthening phase precipitated at the grain boundaries, resulting in the inhibition of the β grain growth and hardness enhancement. In addition, Fe and Cr as β-stabilizing elements existed in the enriched β-Ti phase, which increased the β phase amount. The strength improvement was attributed to grain size optimization and strengthening phase formation. With the 9 wt.% HCFeCr addition, the corresponding Vickers hardness increased to 480 HV, which is 60% higher than the Ti6Al4V alloy. The tensile and yield strength was 1228 and 1140 MPa, respectively. The addition of HCFeCr can effectively enhance the strength and hardness while reducing the cost. This is a promising additive to obtain low-cost Ti alloys with high mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-YCH, Hoboken, 2003

    Book  Google Scholar 

  2. D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61(3), p 844–879

    Article  CAS  Google Scholar 

  3. F.H.S. Froes, M.N. Gungor, and M.A. Imam, Cost-Affordable Titanium: the Component Fabrication Perspective, JOM, 2007, 59(6), p 28–31

    Article  CAS  Google Scholar 

  4. M.A. Imam, F.H. Froes, and R.G. Reddy, Research and Development of low-Cost Titanium Alloys for Biomedical Applications, Key Eng. Mater., 2013, 551, p 133–139

    Article  CAS  Google Scholar 

  5. R. Zhang, D.J. Wang, S.Q. Liu, H.S. Ding, and S.J. Yuan, Hot Deformation Characterization of Lamellar Ti-43Al-2Si Alloy Fabricated By Cold Crucible Continuous Casting, J. Alloys Compd., 2016, 688, p 542–552

    Article  CAS  Google Scholar 

  6. S. Schafföner, C.G. Aneziris, H. Berek, J. Hubálková, B. Rotmann, and B. Friedrich, Corrosion Behavior of Calcium Zirconate Refractories in Contact with Titanium Aluminide Melts, J. Eur. Ceram. Soc., 2015, 35(3), p 1097–1106

    Article  CAS  Google Scholar 

  7. K. Gupta and R.F. Laubscher, Sustainable Machining of Titanium Alloys: A Critical Review, Proc. Inst. Mech. Eng., 2017, 231(14), p 2543–2560

    Article  CAS  Google Scholar 

  8. T.D. Popovici and I. Ciocan, Experimental Study on Cutting Forces at Ti6Al4V Milling, Adv. Mater. Res., 2015, 1128, p 288–292

    Article  Google Scholar 

  9. C.R.F. Azevedo, D. Rodrigues, and F.B. Neto, Ti-Al-V Powder Metallurgy (pm) via the Hydrogenation–Dehydrogenation (hdh) Process, J. Alloys Compd., 2003, 353(1), p 217–227

    Article  CAS  Google Scholar 

  10. B. Sharma, S.K. Vajpai, and K. Ameyama, Microstructure and Properties of Beta Ti-Nb Alloy Prepared By Powder Metallurgy Route Using Titanium Hydride Powder, J. Alloys Compd., 2012, 656, p 978–986

    Article  CAS  Google Scholar 

  11. A.T. Sidambea, I.A. Figueroaa, H.G.C. Hamiltonb, and I. Todda, Metal Injection Moulding of CP-Ti Components for Biomedical Applications, J. Mater. Process. Technol., 2012, 212(7), p 1591–1597

    Article  CAS  Google Scholar 

  12. P. Perssona, A.E.W. Jarforsb, and S. Savagec, Self-Propagating High-Temperature Synthesis and Liquid-Phase Sintering of TiC/Fe Composites, J. Mater. Process. Technol., 2011, 127(2), p 131–139

    Article  Google Scholar 

  13. X.X. Ye, B. Chen, J.H. Shen, J. Umeda, and K. Kondoh, Microstructure and Strengthening Mechanism of Ultrastrong and Ductile Ti-xSn Alloy Processed by Powder Metallurgy, J. Alloys Compd., 2017, 709(30), p 381–393

    Article  CAS  Google Scholar 

  14. D.G. Savvakin, A. Carman, O.M. Ivasishin, M.V. Matviychuk, A.A. Gazder, and E.V. Pereloma, Effect of Iron Content on Sintering Behavior of Ti-V-Fe-Al near-β Titanium Alloy, Metall. Mater. Trans. A, 2012, 43(2), p 716–723

    Article  CAS  Google Scholar 

  15. L. Bolzoni, E. Herraiz, E.M. Ruiz-Navas, and E. Gordo, Study of the Properties of Low-Cost Powder Metallurgy Titanium Alloys by 430 Stainless Steel Addition, Mater. Des., 2014, 60(8), p 628–636

    Article  CAS  Google Scholar 

  16. C.J. Bettles, S. Tochon, M.A. Gibson, B.A. Welk, and H.L. Fraser, Microstructure and Mechanical Properties of Titanium Aluminide Compositions Containing Fe, Mater. Sci. Eng. A, 2013, 575(6A), p 152–159

    Article  CAS  Google Scholar 

  17. L. Bolzonia, E.M. Ruiz-Navasb, and E. Gordob, Quantifying the Properties of Low-Cost Powder Metallurgy Titanium Alloys, Mater. Sci. Eng. A, 2017, 687, p 47–53

    Article  CAS  Google Scholar 

  18. R. Licheri, R. Orrù, and G. Cao, Chemically-Activated Combustion Synthesis of TiC-Ti Composites, Mater. Sci. Eng. A, 2004, 367(1), p 185–197

    Article  CAS  Google Scholar 

  19. V.A. Popov, M. Burghammer, M. Rosenthal, and A. Kotov, In Situ Synthesis of TiC Nano-Reinforcements in Aluminum Matrix Composites During Mechanical Alloying, Composites Part B, 2018, 145, p 57–61

    Article  CAS  Google Scholar 

  20. B. AlMangour, D. Grzesiak, and J. Yang, In-situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites By Selective Laser Melting, J. Alloys Compd., 2017, 706, p 409–418

    Article  CAS  Google Scholar 

  21. X. Yuan, G. Liu, H. Jin, and K. Chen, In Situ Synthesis of TiC Reinforced Metal Matrix Composite (MMC) Coating By Self-Propagating High Temperature Synthesis (SHS), J. Alloys Compd., 2011, 509(30), p 301–303

    Article  CAS  Google Scholar 

  22. Standard E8, Standard test methods for tension testing of metallic materials, 2004

  23. G.A. Salishchev, S.V. Zerebtsov, S.Y. Mironov, and S.L. Semiatin, Formation of Grain Boundary Misorientation Spectrum in Alpha-Beta Titanium Alloys with Lamellar Structure Under Warm and Hot Working, Mater. Sci. Forum, 2004, 467–470, p 501–506

    Article  Google Scholar 

  24. J.L. Murray, Phase Diagrams of Binary Titanium Alloys, ASM International, Metals Park, Ohio, 1987

    Google Scholar 

  25. H. Nakajima, K. Ogasawara, S. Yamaguchi, and M. Koiwa, Diffusion of Chromium in α-Titanium and its Alloys, Mater. Trans. JIM, 1990, 1(4), p 249–254

    Article  Google Scholar 

  26. D.B. Lee, K.B. Park, H.W. Jeong, and S.E. Kim, Mechanical and Oxidation Properties of Ti-xFe-ySi Alloys, Mater. Sci. Eng. A, 2002, 328(1), p 161–168

    Google Scholar 

  27. J. Jiang, S. Li, W. Zhang, W. Yu, and Y. Zhou, In Situ Formed TiCx in High Chromium White Iron Composites: Formation Mechanism and Influencing Factors, J. Alloys Compd., 2019, 788, p 873–880

    Article  CAS  Google Scholar 

  28. B. AlMangour, D. Grzesiak, and J. Yang, In situ Formation of TiC-Particle-Reinforced Stainless Steel Matrix Nanocomposites During Ball Milling: Feedstock Powder Preparation for Selective Laser Melting at Various Energy Densities, Powder Technol, 2018, 326, p 467–478

    Article  CAS  Google Scholar 

  29. ASTM standard B367, Specification for titanium and titanium alloy castings, 2013.

Download references

Acknowledgments

This work was supported by the State Key Lab of Advanced Metals and Materials (No. 2018-Z06). AV acknowledges support from the National Science Foundation (IRES 1358088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Yang, Alex A. Volinsky or Li You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Zhang, C., Guo, Z. et al. High-Carbon Ferrochrome Effects on Microstructure and Mechanical Properties of Powder Metallurgy Titanium Alloys. J. of Materi Eng and Perform 28, 5361–5368 (2019). https://doi.org/10.1007/s11665-019-04282-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04282-x

Keywords

Navigation